48 resultados para 3D printing,steel bars,calibration of design values,correlation
Resumo:
Aim of this thesis was to design and manufacture a microdistillation column. The literature review part of this thesis covers stainless steels, material processing and basics about engineering design and distillation. The main focus, however, is on the experimental part. Experimental part is divided into five distinct sections: First part is where the device is introduced and separated into three parts. Secondly the device is designed part by part. It consists mostly of detail problem solving, since the first drawings had already been drawn and the critical dimensions decided. Third part is the manufacture, which was not fully completed since the final assembly was left out of this thesis. Fourth part is the test welding for the device, and its analysis. Finally some ideas for further studies are presented. The main goal of this thesis was accomplished. The device only lacks some final assembly but otherwise it is complete. One thing that became clear during the process was how difficult it is to produce small and precise steel parts with conventional manufacturing methods. Internal stresses within steel plates and thermal distortions can easily ruin small steel structures. Designing appropriate welding jigs is an important task for even simple devices. Laser material processing is a promising tool for this kind of steel processing because of the flexibility, good cutting quality and also precise and low heat input when welding. Next step in this project is the final assembly and the actual distillation tests. The tests will be carried out at Helsinki University of Technology.
Resumo:
This master’s thesis mainly focuses on the design requirements of an Electric drive for Hybrid car application and its control strategy to achieve a wide speed range. It also emphasises how the control and performance requirements are transformed into its design variables. A parallel hybrid topology is considered where an IC engine and an electric drive share a common crank shaft. A permanent magnet synchronous machine (PMSM) is used as an electric drive machine. Performance requirements are converted into Machine design variables using the vector model of PMSM. Main dimensions of the machine are arrived using analytical approach and Finite Element Analysis (FEA) is used to verify the design and performance. Vector control algorithm was used to control the machine. The control algorithm was tested in a low power PMSM using an embedded controller. A prototype of 10 kW PMSM was built according to the design values. The prototype was tested in the laboratory using a high power converter. Tests were carried out to verify different operating modes. The results were in agreement with the calculations.
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, has gained a lot of interest in past recent years within various industries, such as medical and aerospace industries. LAM enables fabrication of complex 3D geometries by melting metal powder layer by layer with laser beam. Research in laser additive manufacturing has been focused in development of new materials and new applications in past 10 years. Since this technology is on cutting edge, efficiency of manufacturing process is in center role of research of this industry. Aim of this thesis is to characterize methods for process efficiency improvements in laser additive manufacturing. The aim is also to clarify the effect of process parameters to the stability of the process and in microstructure of manufactured pieces. Experimental tests of this thesis were made with various process parameters and their effect on build pieces has been studied, when additive manufacturing was performed with a modified research machine representing EOSINT M-series and with EOS EOSINT M280. Material used was stainless steel 17-4 PH. Also, some of the methods for process efficiency improvements were tested. Literature review of this thesis presents basics of laser additive manufacturing, methods for improve the process efficiency and laser beam – material- interaction. It was observed that there are only few public studies about process efficiency of laser additive manufacturing of stainless steel. According to literature, it is possible to improve process efficiency with higher power lasers and thicker layer thicknesses. The process efficiency improvement is possible if the effect of process parameter changes in manufactured pieces is known. According to experiments carried out in this thesis, it was concluded that process parameters have major role in single track formation in laser additive manufacturing. Rough estimation equations were created to describe the effect of input parameters to output parameters. The experimental results showed that the WDA (width-depth-area of cross-sections of single track) is correlating exponentially with energy density input. The energy density input is combination of the input parameters of laser power, laser beam spot diameter and scan speed. The use of skin-core technique enables improvement of process efficiency as the core of the part is manufactured with higher laser power and thicker layer thickness and the skin with lower laser power and thinner layer thickness in order to maintain high resolution. In this technique the interface between skin and core must have overlapping in order to achieve full dense parts. It was also noticed in this thesis that keyhole can be formed in LAM process. It was noticed that the threshold intensity value of 106 W/cm2 was exceeded during the tests. This means that in these tests the keyhole formation was possible.
Resumo:
In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.
Resumo:
Pikamallinnustekniikat ovat kehittyneet viime vuosina nopeasti. Tämä antaa jo lähes rajat-tomat mahdollisuudet tuottaa 3D-tulostamalla erilaisia tuotteita. 3D-tulostuksen hyödyntä-minen on yleistynyt erityisesti teollisuuden ja teknologian aloilla. Tässä työssä tutkittiin miten 3D-tulostamista voidaan hyödyntää diagnostisten pikatestien tuotekehityksessä. Immunologinen lateral flow-testi on vasta-aineisiin perustuva, nopea ja helppokäyttöinen mittausmenetelmä pienten ainemäärien havaitsemiseen. Tässä työssä kehitettiin lateral flow-testikotelo, jonka suunnitteluun ja rakenteen mallintamiseen käytettiin 3D-tulostustekniikkaa. Testikotelon toimivuus lateral flow- testissä varmistettiin kehittämällä testikoteloon sopiva pikatesti, jonka suorituskykyä analysoitiin sekä visuaalisesti että Actim 1ngeni-lukulaitteella. Työ aloitettiin tutkimalla eri pikavalmistustekniikoita, joista testikotelon tulostamiseen valittiin SLA-tekniikka sen tulostustarkkuuden ja tuotteen pinnan laadun perusteella. Testikotelon suunnittelu aloitettiin määrittämällä millaisia ominaisuuksia testikotelolta haluttiin. Näitä ominaisuuksia olivat lateral flow-testin suojaaminen sekä testissä kulkevan näytteen virtauksen varmistamien. Lateral flow- testin kehityksessä hyödynnettiin osin aiemmin kehitetystä pikatestistä saatuja tietoja. Lateral flow- kasettitestin valmistusprosessi koostui seitsemästä eri prosessivaiheesta jotka olivat: Vasta-aineen/kontrollireagenssin konjugointi, näytetyynyn käsittely, konjugointityynyn käsittely, konjugointityynylle annostelu, membraanille annostelu, tikkujen laminointi ja leikkaus sekä kasettitestin kokoonpano. Kehitetyn lateral flow- kasettitestin toimivuus varmistettiin tutkimalla testin reaktiokinetiikkaa ja analyyttistä herkkyyttä sekä visuaalisesti että lukulaitteen avulla. Tutkimustulosten perusteella 3D-tulostus on erittäin hyödyllinen menetelmä pikatestien tuotekehityksessä suunniteltaessa testikotelorakenteita, näytteen annosteluvälineitä ja näiden yhdistelmiä.
Resumo:
At present, one of the main concerns of green network is to minimize the power consumption of network infrastructure. Surveys show that, the highest amount of power is consumed by the network devices during its runtime. However to control this power consumption it is important to know which factors has highest impact on this matter. This paper is focused on the measurement and modeling the power consumption of an Ethernet switch during its runtime considering various types of input parameters with all possible combinations. For the experiment, three input parameters are chosen. They are bandwidth, link load and number of connections. The output to be measured is the power consumption of the Ethernet switch. Due to the uncertain power consuming pattern of the Ethernet switch a fully-comprehensive experimental evaluation would require an unfeasible and cumbersome experimental phase. Because of that, design of experiment (DoE) method has been applied to obtain adequate information on the effects of each input parameters on the power consumption. The whole work consists of three parts. In the first part a test bed is planned with input parameters and the power consumption of the switch is measured. The second part is about generating a mathematical model with the help of design of experiment tools. This model can be used for measuring precise power consumption in different scenario and also pinpoint the parameters with higher influence in power consumption. And in the last part, the mathematical model is evaluated by comparing with the experimental values.
Resumo:
Additive manufacturing (shortened as AM), or more commonly 3D printing, consists of wide variety of different modern manufacturing technologies. AM is based on direct printing of a digital 3D model to a final product which is fabricated adding material layer by layer. This is from where term additive manufacturing has its origin. It is not only material what is added, but it is also value, properties etc. which are added. AM enables production of different and even better products compared to conventional manufacturing technologies. An estimation of potential of additive manufacturing can be gathered by considering the potential of laser cutting, which is one of the most widely used modern manufacturing technologies. This technique has been used over 40 years, and whole market around this technology is at the moment c. four billion euros and yearly growth is around 10 %. One factor affecting this success of laser cutting is that laser cutting enables radical improvements to products made of flat sheet. AM and 3D printing will do the same for three dimensional parts. Laser devices, which are at the moment used in 3D printing, are globally at the moment only around 1% of all laser devices used in any fabrication technology, so even with a cautious estimate the potential growth of at least 100 % is coming in next few years. Role of education is very important, when this kind of modern technology is industrially implemented. When both generation entering to work life and also generation who has been a while in work life understands new technology, its potential and limitations, this is the point when also product design can be rethought Potential of product design is driving force for wide use of additive manufacturing and 3D printing. Utilization of additive manufacturing and 3D printing is also opportunity for Finland and Finnish industry. This technology can save Finnish manufacturing industry. This technique has stron potential, as Finland has traditionally strong industrial know-how and good ICT knowledge.
Resumo:
The integrated system of design for manufacturing and assembly (DFMA) and internet based collaborative design are presented to support product design, manufacturing process, and assembly planning for axial eccentric oil-pump design. The presented system manages and schedules group oriented collaborative activities. The design guidelines of internet based collaborative design & DFMA are expressed. The components and the manufacturing stages of axial eccentric oil-pump are expressed in detail. The file formats of the presented system include the data types of collaborative design of the product, assembly design, assembly planning and assembly system design. Product design and assembly planning can be operated synchronously and intelligently and they are integrated under the condition of internet based collaborative design and DFMA. The technologies of collaborative modelling, collaborative manufacturing, and internet based collaborative assembly for the specific pump construction are developed. A seven-security level is presented to ensure the security of the internet based collaborative design system.
Resumo:
Tämän diplomityön tavoitteena oli saada perustietoa tekijöistä, jotka vaikuttavat musteen kuivumiseen erilaisilla paperipinnoilla inkjet tulostuksessa. Tavoitteena oli saada tietoa erilaisista musteista, joita käytetään yleisimmissä inkjet tulostustekniikoissa, miten paperit vaikuttavat musteen kuivumiseen ja minkälaisia menetelmiä on olemassa musteen kuivumistekijöiden määrittämiseen. Lisäksi tarkoituksena oli varmistaa, voidaanko inkjetmusteiden absorptioajan määrittämiseen käytettävää DIGAT-laitetta käyttää määrittämään ja ennustamaan erilaisten musteiden kuivumista erilaisilla paperipinnoilla sekä etsiä korrelaatioita musteen absorptioajan ja teknisten paperiominaisuuksien sekä inkjet tulostuksen laadun välillä. Kirjallisuusosassa tarkasteltiin erilaisia inkjet tulostusmenetelmiä, niissä käytettäviä musteita ja musteiden koostumuksia. Tutkittiin myös paperin ja musteen välisiä vuorovaikutuksia sekä inkjet tulostuksen laatua. Kokeellisessa osassa tutkittiin musteenabsorboitumista paperiin DIGAT-laitteen avulla. kuudella eri musteella. Paperinäytteistä määritettiin teknisiä paperiominaisuuksia sekä ominaisuuksia, jotka liittyvät inkjet tulostuksen laatuun. Inkjet tulostuksen laatua tarkasteltiin tulostamalla testikuva kolmella eri tulostimella, jotka olivat Canon Bubble Jet i950, HP DeskJet Cxi970 ja Epson Stylus C46. Havaittiin, että DIGAT-laite ei sovellu määrittämään musteen absorptioaikoja kiiltäville näytteille.Tässä tutkimuksessa näyte, jonka kiilto oli 65 %, oli liian kiiltävä mitattavaksi DIGAT-laitteella. Lisäksi absorptiomäärityksissä havaittiin, että erilaiset musteet asettuvat erilailla paperin pintaan ja että pigmenttipohjaisella musteella asettumisaika oli kaikista pisin. Musteiden absorptioajat olivat nopeimpia erikoisinkjetpaperilla ja hitaimpia päällystetyillä, tiiviillä papereilla. Musteen absorptioajan ja teknisten paperiominaisuuksien ja inkjet tulostuksen laadun välisiä korrelaatioita oli vaikea havaita. Voidaan sanoa, että tulokset olivat muste- ja printterikohtaisia. Havaittiin vain muutamia teknisiä paperiominaisuuksia, jotka korreloivat hyvin musteen absorboitumisen kanssa. Nämäolivat Gurley-Hill huokoisuus, paperin tuhka- sekä kalsiumkarbonaattipitoisuus ja K&N värinabsorptio. Myöskään inkjet tulostuksen laadun ja musteen absorption välisiä korrelaatioita ei löytynyt kuin muutama; densiteetti, mottling sekä bleeding. Tämän tutkimuksen perusteella voidaan todeta DIGAT-laitteen soveltuvan hyvin kuvaamaan inkjet tulostuksen laatuominaisuuksista densiteettia, mottlingia sekä bleedingiä. DIGAT-laitetta voidaan siis käyttää avuksi ennustettaessa kuivumisaikaa ja sen vaikutusta edellä mainittuihin ominaisuuksiin. Läpipainatusominaisuuksia DIGAT-laitteen avulla ei voida tutkia, sillä ne ovat enemmän riippuvaisia paperin neliömassasta, paksuudesta ja huokoisuudesta kuinmusteen absorptioajasta. Teknisistä paperiominaisuuksista Gurley-Hill huokoisuus, paperin tuhka-sekä CaCO3-pitoisuus ja K&N värinabsorptio kuvaavat hyvin musteen imeytymisaikaa paperiin, kun taas ominaisuudet Cobb, HST ja polaari- sekädispersiokomponentit eivät kuvaa. Näyttää siltä, että testikuva, joka on tällä hetkellä käytössä UPM Tutkimus-keskuksessa, ei sovellu suurtehotulostuksen laadun tarkkailuun. Testikuva toimii hyvin pöytätulostimilla ja perinteisillä kopiopapereilla ja inkjetpapereilla, jotka on tarkoitettu tulostettaviksi hitaasti. Tulostusnopeuden ja musteen kuivumisnopeuden välisiä ilmiöitä seei tuo esille, joten se ei sovellu kuvaamaan suurtehotulostusta.
Resumo:
The thin disk and fiber lasers are new solid-state laser technologies that offer a combinationof high beam quality and a wavelength that is easily absorbed by metal surfacesand are expected to challenge the CO2 and Nd:YAG lasers in cutting of metals ofthick sections (thickness greater than 2mm). This thesis studied the potential of the disk and fiber lasers for cutting applications and the benefits of their better beam quality. The literature review covered the principles of the disk laser, high power fiber laser, CO2 laser and Nd:YAG laser as well as the principle of laser cutting. The cutting experiments were made with thedisk, fiber and CO2 lasers using nitrogen as an assist gas. The test material was austenitic stainless steel of sheet thickness 1.3mm, 2.3mm, 4.3mm and 6.2mm for the disk and fiber laser cutting experiments and sheet thickness of 1.3mm, 1.85mm, 4.4mm and 6.4mm for the CO2 laser cutting experiments. The experiments focused on the maximum cutting speeds with appropriate cut quality. Kerf width, cutedge perpendicularity and surface roughness were the cut characteristics used to analyze the cut quality. Attempts were made to draw conclusions on the influence of high beam quality on the cutting speed and cut quality. The cutting speeds were enormous for the disk and fiber laser cutting experiments with the 1.3mm and 2.3mm sheet thickness and the cut quality was good. The disk and fiber laser cutting speeds were lower at 4.3mm and 6.2mm sheet thickness but there was still a considerable percentage increase in cutting speeds compared to the CO2 laser cutting speeds at similar sheet thickness. However, the cut quality for 6.2mm thickness was not very good for the disk and fiber laser cutting experiments but could probably be improved by proper selection of cutting parameters.
Resumo:
Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.
Resumo:
This research has been focused at the development of a tuned systematic design methodology, which gives the best performance in a computer aided environment and utilises a cross-technological approach, specially tested with and for laser processed microwave mechanics. A tuned design process scheme is also presented. Because of the currently large production volumes of microwave and radio frequency mechanics even slight improvements of design methodologies or manufacturing technologies would give reasonable possibilities for cost reduction. The typical number of required iteration cycles could be reduced to one fifth of normal. The research area dealing with the methodologies is divided firstly into a function-oriented, a performance-oriented or a manufacturability-oriented product design. Alternatively various approaches can be developed for a customer-oriented, a quality-oriented, a cost-oriented or an organisation-oriented design. However, the real need for improvements is between these two extremes. This means that the effective methodology for the designers should not be too limited (like in the performance-oriented design) or too general (like in the organisation-oriented design), but it should, include the context of the design environment. This is the area where the current research is focused. To test the developed tuned design methodology for laser processing (TDMLP) and the tuned optimising algorithm for laser processing (TOLP), seven different industrial product applications for microwave mechanics have been designed, CAD-modelled and manufactured by using laser in small production series. To verify that the performance of these products meets the required level and to ensure the objectiveness ofthe results extensive laboratory tests were used for all designed prototypes. As an example a Ku-band horn antenna can be laser processed from steel in 2 minutes at the same time obtaining a comparable electrical performance of classical aluminium units or the residual resistance of a laser joint in steel could be limited to 72 milliohmia.
Resumo:
Software engineering is criticized as not being engineering or 'well-developed' science at all. Software engineers seem not to know exactly how long their projects will last, what they will cost, and will the software work properly after release. Measurements have to be taken in software projects to improve this situation. It is of limited use to only collect metrics afterwards. The values of the relevant metrics have to be predicted, too. The predictions (i.e. estimates) form the basis for proper project management. One of the most painful problems in software projects is effort estimation. It has a clear and central effect on other project attributes like cost and schedule, and to product attributes like size and quality. Effort estimation can be used for several purposes. In this thesis only the effort estimation in software projects for project management purposes is discussed. There is a short introduction to the measurement issues, and some metrics relevantin estimation context are presented. Effort estimation methods are covered quite broadly. The main new contribution in this thesis is the new estimation model that has been created. It takes use of the basic concepts of Function Point Analysis, but avoids the problems and pitfalls found in the method. It is relativelyeasy to use and learn. Effort estimation accuracy has significantly improved after taking this model into use. A major innovation related to the new estimationmodel is the identified need for hierarchical software size measurement. The author of this thesis has developed a three level solution for the estimation model. All currently used size metrics are static in nature, but this new proposed metric is dynamic. It takes use of the increased understanding of the nature of the work as specification and design work proceeds. It thus 'grows up' along with software projects. The effort estimation model development is not possible without gathering and analyzing history data. However, there are many problems with data in software engineering. A major roadblock is the amount and quality of data available. This thesis shows some useful techniques that have been successful in gathering and analyzing the data needed. An estimation process is needed to ensure that methods are used in a proper way, estimates are stored, reported and analyzed properly, and they are used for project management activities. A higher mechanism called measurement framework is also introduced shortly. The purpose of the framework is to define and maintain a measurement or estimationprocess. Without a proper framework, the estimation capability of an organization declines. It requires effort even to maintain an achieved level of estimationaccuracy. Estimation results in several successive releases are analyzed. It isclearly seen that the new estimation model works and the estimation improvementactions have been successful. The calibration of the hierarchical model is a critical activity. An example is shown to shed more light on the calibration and the model itself. There are also remarks about the sensitivity of the model. Finally, an example of usage is shown.
Resumo:
In this paper, manufacturability analysis and collection of design aspects is made for a microwave test-fixture. Aspects of applying systematic design for a microwave test-fixture design and manufacturing are also analysed. Special questionnaires for the component and machining are made in order to enable necessary information to ensure DFM(A) – aspects of the component. The aspects of easy manufacturing for machining the microwave test-fixture are collected. Material selection is discussed and manufacturing stages of prototype manufacturing are presented.