19 resultados para 3-DIMENSIONAL FRAMEWORK
Resumo:
Transport properties of GaAs / δ – Mn / GaAs / InxGa1-xAs / GaAs structure with Mn δ – layer, which is separated from InxGa1-xAs quantum well (QW) by 3 nm thick GaAs spacer was investigated. This structure with high mobility was characterized by X-ray difractometry and reflectometry. Transport and electrical properties of the structure were measured by using Pulsed Magnetic Field System (PMFS). During investigation of the Shubnikov – de Haas and the Hall effects the main parameters of QW structure such as cyclotron mass, Fermi level, g – factor, Dingle temperature and concentration of holes were estimated. Obtained results show high quality of the prepared structure. However, anomalous Hall effect at temperatures 2.09 K, 3 K, 4.2 K is not clearly observed. Attempts to identify magnetic moment were made. For this purpose the polarity of the filed was changed to the opposite at each shot. As a result hysteresis loop was not observed in the magnetic field dependences of the anomalous Hall resistivity.This can be attributed to the imperfection of the experimental setup.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The aim of this project was to develop general framework for systematic assessment of energy efficiency of heating on regional level in Russia. The framework created during this project includes two main instruments, namely: general regional heating energy efficiency assessment model (REEMod) and general regional heating energy efficiency assessment criteria for housing areas (REECrit). Framework pays extreme attention to realization of energy saving, overall cost efficiency and comfortable indoor climate. Life-cycle ideology was applied during creation of the framework. Application of the framework can provide decision-making process with systematically collected and processed information on current state of areas energy efficiency. Such information will help decision makers to evaluate current situation of the whole energy chain, to compare different development scenarios and to identify the most efficient improvement methods, thus supporting realization of regions efficient energy management. Simultaneous pursuit of energy savings, cost efficiency and indoor air quality can contribute to development of sustainable community. Presented instruments should be continuously developed further as an iterative process based on knew experience, development of technology and overall understanding of energy efficiency issues.
Resumo:
This thesis reports investigations on applying the Service Oriented Architecture (SOA) approach in the engineering of multi-platform and multi-devices user interfaces. This study has three goals: (1) analyze the present frameworks for developing multi-platform and multi-devices applications, (2) extend the principles of SOA for implementing a multi-platform and multi-devices architectural framework (SOA-MDUI), (3) applying and validating the proposed framework in the context of a specific application. One of the problems addressed in this ongoing research is the large amount of combinations for possible implementations of applications on different types of devices. Usually it is necessary to take into account the operating system (OS), user interface (UI) including the appearance, programming language (PL) and architectural style (AS). Our proposed approach extended the principles of SOA using patterns-oriented design and model-driven engineering approaches. Synthesizing the present work done in these domains, this research built and tested an engineering framework linking Model-driven Architecture (MDA) and SOA approaches to developing of UI. This study advances general understanding of engineering, deploying and managing multi-platform and multi-devices user interfaces as a service.