21 resultados para 1-DIMENSIONAL CHAIN
Resumo:
The aim of this report is to describe the current status of the waste-to-energy chain in the province of Northern Savonia in Finland. This work is part of the Baltic Sea Region Programme project Remowe-Regional Mobilizing of Sustainable Waste-to-Energy Production (2009-2012). Partnering regions across Baltic Sea countries have parallelly investigated the current status, bottle-necks and needs for development in their regions. Information about the current status is crucial for the further work within the Remowe project, e.g. in investigating the possible future status in target regions. Ultimate result from the Northern Savonia point of view will be a regional model which utilizes all available information and facilitates decision-making concerning energy utilization of waste. The report contains information on among others: - waste management system (sources, amounts, infrastructure) - energy system (use, supply, infrastructure) - administrative structure and legislation - actors and stakeholders in the waste-to-energy field, including interest and development ideas The current status of the regions will be compared in a separate Remowe report, with the focus on finding best practices that could be transferred among the regions. In this report, the current status has been defined as 2006-2009. In 2009, the municipal waste amount per capita was 479 kg/inhabitant in Finland. Industrial waste amounted 3550 kg/inhabitant, respectively. The potential bioenergy from biodegradable waste amounts 1 MWh/inhabitant in Northern Savonia. This figure includes animal manure, crops that would be suitable for energy use, sludge from municipal sewage treatment plants and separately collected biowaste. A key strategy influencing also to Remowe work is the waste plan for Eastern Finland. Currently there operate two digestion plants in Northern Savonia: Lehtoniemi municipal sewage treatment sludge digestion plant of Kuopion Vesi and the farm-scale research biogas plant of Agrifood Research Finland in Maaninka. Moreover, landfill gas is collected to energy use from Heinälamminrinne waste management centre and Silmäsuo closed landfill site, both belonging to Jätekukko Oy. Currently there is no thermal utilization of waste in Northern Savonia region. However, Jätekukko Oy is pretreating mixed waste and delivering refuse derived fuel (RDF) to Southern Finland to combustion. There is a strong willingness among seven regional waste management companies in Eastern Finland to build a waste incineration plant to Riikinneva waste management centre near city of Varkaus. The plant would use circulating fluidized bed (CFB) boiler. This would been a clear boost in waste-to-energy utilization in Northern Savonia and in many surrounding regions.
Resumo:
Nowadays global business trends force the adoption of innovative ICTs into the supply chain management (SCM). Particularly, the RFID technology is on high demand among SCM professionals due to its business advantages such as improving of accuracy and veloc-ity of SCM processes which lead to decrease of operational costs. Nevertheless, a question of the RFID technology impact on the efficiency of warehouse processes in the SCM re-mains open. The goal of the present study is to experiment the possibility of improvement order picking velocity in a warehouse of a big logistics company with the use of the RFID technology. In order to achieve this goal the following objectives have been developed: 1) Defining the scope of the RFID technology applications in the SCM; 2) Justification of the RFID technology impact on the SCM processes; 3) Defining a place of the warehouse order picking process in the SCM; 4) Identification and systematization of existing meth-ods of order picking velocity improvement; 5) Choosing of the study object and gathering of the empirical data about number of orders, number of hours spent per each order line daily during 5 months; 6) Processing and analysis of the empirical data; 7) Conclusion about the impact of the RFID technology on the speed of order picking process. As a result of the research it has been found that the speed of the order picking processes has not been changed as time has gone after the RFID adoption. It has been concluded that in order to achieve a positive effect in the speed of order picking process with the use of the RFID technology it is necessary to simultaneously implement changes in logistics and organizational management in 3PL logistics companies. Practical recommendations have been forwarded to the management of the company for further investigation and procedure.
Resumo:
Interest towards working capital management increased among practitioners and researchers because the financial crisis of 2008 caused the deterioration of the general financial situation. The importance of managing working capital effectively increased dramatically during the financial crisis. On one hand, companies highlighted the importance of working capital management as part of short-term financial management to overcome funding difficulties. On the other hand, in academia, it has been highlighted the need to analyze working capital management from a wider perspective namely from the value chain perspective. Previously, academic articles mostly discussed working capital management from a company-centered perspective. The objective of this thesis was to put working capital management in a wider and more academic perspective and present case studies of the value chains of industries as instrumental in theoretical contributions and practical contributions as complementary to theoretical contributions and conclusions. The principal assumption of this thesis is that selffinancing of value chains can be established through effective working capital management. Thus, the thesis introduces the financial value chain analysis method which is employed in the empirical studies. The effectiveness of working capital management of the value chains is studied through the cycle time of working capital. The financial value chain analysis method employed in this study is designed for considering value chain level phenomena. This method provides a holistic picture of the value chain through financial figures. It extends the value chain analysis to the industry level. Working capital management is studied by the cash conversion cycle that measures the length (days) of time a company has funds tied up in working capital, starting from the payment of purchases to the supplier and ending when remittance of sales is received from the customers. The working capital management practices employed in the automotive, pulp and paper and information and communication technology industries have been studied in this research project. Additionally, the Finnish pharmaceutical industry is studied to obtain a deeper understanding of the working capital management of the value chain. The results indicate that the cycle time of working capital is constant in the value chain context over time. The cash conversion cycle of automotive, pulp and paper, and ICT industries are on average 70, 60 and 40 days, respectively. The difference is mainly a consequence of the different cycle time of inventories. The financial crisis of 2008 affected the working capital management of the industries similarly. Both the cycle time of accounts receivable and accounts payable increased between 2008 and 2009. The results suggest that the companies of the automotive, pulp and paper and ICT value chains were not able to self-finance. Results do not indicate the improvement of value chains position in regard to working capital management either. The findings suggest that companies operating in the Finnish pharmaceutical industry are interested in developing their own working capital management, but collaboration with the value chain partners is not considered interesting. Competition no longer occurs between individual companies, but between value chains. Therefore the financial value chain analysis method introduced in this thesis has the potential to support value chains in improving their competitiveness.
Resumo:
This thesis addresses the coolability of porous debris beds in the context of severe accident management of nuclear power reactors. In a hypothetical severe accident at a Nordic-type boiling water reactor, the lower drywell of the containment is flooded, for the purpose of cooling the core melt discharged from the reactor pressure vessel in a water pool. The melt is fragmented and solidified in the pool, ultimately forming a porous debris bed that generates decay heat. The properties of the bed determine the limiting value for the heat flux that can be removed from the debris to the surrounding water without the risk of re-melting. The coolability of porous debris beds has been investigated experimentally by measuring the dryout power in electrically heated test beds that have different geometries. The geometries represent the debris bed shapes that may form in an accident scenario. The focus is especially on heap-like, realistic geometries which facilitate the multi-dimensional infiltration (flooding) of coolant into the bed. Spherical and irregular particles have been used to simulate the debris. The experiments have been modeled using 2D and 3D simulation codes applicable to fluid flow and heat transfer in porous media. Based on the experimental and simulation results, an interpretation of the dryout behavior in complex debris bed geometries is presented, and the validity of the codes and models for dryout predictions is evaluated. According to the experimental and simulation results, the coolability of the debris bed depends on both the flooding mode and the height of the bed. In the experiments, it was found that multi-dimensional flooding increases the dryout heat flux and coolability in a heap-shaped debris bed by 47–58% compared to the dryout heat flux of a classical, top-flooded bed of the same height. However, heap-like beds are higher than flat, top-flooded beds, which results in the formation of larger steam flux at the top of the bed. This counteracts the effect of the multi-dimensional flooding. Based on the measured dryout heat fluxes, the maximum height of a heap-like bed can only be about 1.5 times the height of a top-flooded, cylindrical bed in order to preserve the direct benefit from the multi-dimensional flooding. In addition, studies were conducted to evaluate the hydrodynamically representative effective particle diameter, which is applied in simulation models to describe debris beds that consist of irregular particles with considerable size variation. The results suggest that the effective diameter is small, closest to the mean diameter based on the number or length of particles.
Resumo:
Subshifts are sets of configurations over an infinite grid defined by a set of forbidden patterns. In this thesis, we study two-dimensional subshifts offinite type (2D SFTs), where the underlying grid is Z2 and the set of for-bidden patterns is finite. We are mainly interested in the interplay between the computational power of 2D SFTs and their geometry, examined through the concept of expansive subdynamics. 2D SFTs with expansive directions form an interesting and natural class of subshifts that lie between dimensions 1 and 2. An SFT that has only one non-expansive direction is called extremely expansive. We prove that in many aspects, extremely expansive 2D SFTs display the totality of behaviours of general 2D SFTs. For example, we construct an aperiodic extremely expansive 2D SFT and we prove that the emptiness problem is undecidable even when restricted to the class of extremely expansive 2D SFTs. We also prove that every Medvedev class contains an extremely expansive 2D SFT and we provide a characterization of the sets of directions that can be the set of non-expansive directions of a 2D SFT. Finally, we prove that for every computable sequence of 2D SFTs with an expansive direction, there exists a universal object that simulates all of the elements of the sequence. We use the so called hierarchical, self-simulating or fixed-point method for constructing 2D SFTs which has been previously used by Ga´cs, Durand, Romashchenko and Shen.