212 resultados para Forest fragment
Resumo:
Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.
Resumo:
Changes in the abundance of top predators have brought about notable, cascading effects in ecosystems around the world. In this thesis, I examined several potential trophic cascades in boreal ecosystems, and their separate interspecific interactions. The main aim of the thesis was to investigate whether predators in the boreal forests have direct or indirect cascading effects on the lower trophic levels. First, I compared the browsing effects of different mammalian herbivores by excluding varying combinations of voles, hares and cervids from accessing the seedlings of silver birch (Betula pendula), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Additionally, I studied the effect of simulated predation risk on vole browsing by using auditory cues of owls. Moving upwards on the trophic levels, I examined the intraguild interactions between the golden eagle (Aquila chrysaetos), and its mesopredator prey, the red fox (Vulpes vulpes) and the pine marten (Martes martes). To look at an entire potential trophic cascade, I further studied the combined impacts of eagles and mesopredators on the black grouse (Tetrao tetrix) and the hazel grouse (Tetrastes bonasia), predicting that the shared forest grouse prey would benefit from eagle presence. From the tree species studied, birch appears to be the most palatable one for the mammalian herbivores. I observed growth reductions in the presences of cervids and low survival associated with hares and voles, which suggests that they all weaken regeneration in birch stands. Furthermore, the simulated owl predation risk appeared to reduce vole browsing on birches in late summer, although the preferred grass forage is then old and less palatable. Browsing by voles and hares had a negative effect on the condition and survival of Scots pine, but in contrast, the impact of mammalian herbivores on spruce was found to be small, at least when more preferred food is available. I observed that the presence of golden eagles had a negative effect on the abundance of adult black grouse but a positive, protective effect on the proportion of juveniles in both black grouse and hazel grouse. Yet, this positive effect was not dependent on the abundance foxes or martens, nor did eagles seem to effectively decrease the abundance of these mesopredators. Conversely, the protection effect on grouse could arise from fear effects and also be mediated by other mesopredators. The results of this thesis provide important new information about trophic interactions in the boreal food webs. They highlight how different groups of mammalian herbivores vary in their effects on the growth and condition of different tree seedlings. Lowered cervid abundances could improve birch regeneration, which indirectly supports the idea that the key predators of cervids could cause cascading effects also in Fennoscandian forests. Owls seem to reduce vole browsing through an intimidation effect, which is a novel result of the cascading effects of owl vocalisation and could even have applications for protecting birch seedlings. In the third cascade examined in this thesis, I found the golden eagle to have a protective effect on the reproducing forest grouse, but it remains unclear through which smaller predators this effect is mediated. Overall, the results of this thesis further support the idea that there are cascading effects in the forests of Northern Europe, and that they are triggered by both direct and non‐lethal effects of predation.