212 resultados para Forest Processor
Resumo:
Changes in the abundance of top predators have brought about notable, cascading effects in ecosystems around the world. In this thesis, I examined several potential trophic cascades in boreal ecosystems, and their separate interspecific interactions. The main aim of the thesis was to investigate whether predators in the boreal forests have direct or indirect cascading effects on the lower trophic levels. First, I compared the browsing effects of different mammalian herbivores by excluding varying combinations of voles, hares and cervids from accessing the seedlings of silver birch (Betula pendula), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Additionally, I studied the effect of simulated predation risk on vole browsing by using auditory cues of owls. Moving upwards on the trophic levels, I examined the intraguild interactions between the golden eagle (Aquila chrysaetos), and its mesopredator prey, the red fox (Vulpes vulpes) and the pine marten (Martes martes). To look at an entire potential trophic cascade, I further studied the combined impacts of eagles and mesopredators on the black grouse (Tetrao tetrix) and the hazel grouse (Tetrastes bonasia), predicting that the shared forest grouse prey would benefit from eagle presence. From the tree species studied, birch appears to be the most palatable one for the mammalian herbivores. I observed growth reductions in the presences of cervids and low survival associated with hares and voles, which suggests that they all weaken regeneration in birch stands. Furthermore, the simulated owl predation risk appeared to reduce vole browsing on birches in late summer, although the preferred grass forage is then old and less palatable. Browsing by voles and hares had a negative effect on the condition and survival of Scots pine, but in contrast, the impact of mammalian herbivores on spruce was found to be small, at least when more preferred food is available. I observed that the presence of golden eagles had a negative effect on the abundance of adult black grouse but a positive, protective effect on the proportion of juveniles in both black grouse and hazel grouse. Yet, this positive effect was not dependent on the abundance foxes or martens, nor did eagles seem to effectively decrease the abundance of these mesopredators. Conversely, the protection effect on grouse could arise from fear effects and also be mediated by other mesopredators. The results of this thesis provide important new information about trophic interactions in the boreal food webs. They highlight how different groups of mammalian herbivores vary in their effects on the growth and condition of different tree seedlings. Lowered cervid abundances could improve birch regeneration, which indirectly supports the idea that the key predators of cervids could cause cascading effects also in Fennoscandian forests. Owls seem to reduce vole browsing through an intimidation effect, which is a novel result of the cascading effects of owl vocalisation and could even have applications for protecting birch seedlings. In the third cascade examined in this thesis, I found the golden eagle to have a protective effect on the reproducing forest grouse, but it remains unclear through which smaller predators this effect is mediated. Overall, the results of this thesis further support the idea that there are cascading effects in the forests of Northern Europe, and that they are triggered by both direct and non‐lethal effects of predation.
Resumo:
The strongest wish of the customer concerning chemical pulp features is consistent, uniform quality. Variation may be controlled and reduced by using statistical methods. However, studies addressing the application and benefits of statistical methods in forest product sector are scarce. Thus, the customer wish is the root cause of the motivation behind this dissertation. The research problem addressed by this dissertation is that companies in the chemical forest product sector require new knowledge for improving their utilization of statistical methods. To gain this new knowledge, the research problem is studied from five complementary viewpoints – challenges and success factors, organizational learning, problem solving, economic benefit, and statistical methods as management tools. The five research questions generated on the basis of these viewpoints are answered in four research papers, which are case studies based on empirical data collection. This research as a whole complements the literature dealing with the use of statistical methods in the forest products industry. Practical examples of the application of statistical process control, case-based reasoning, the cross-industry standard process for data mining, and performance measurement methods in the context of chemical forest products manufacturing are brought to the public knowledge of the scientific community. The benefit of the application of these methods is estimated or demonstrated. The purpose of this dissertation is to find pragmatic ideas for companies in the chemical forest product sector in order for them to improve their utilization of statistical methods. The main practical implications of this doctoral dissertation can be summarized in four points: 1. It is beneficial to reduce variation in chemical forest product manufacturing processes 2. Statistical tools can be used to reduce this variation 3. Problem-solving in chemical forest product manufacturing processes can be intensified through the use of statistical methods 4. There are certain success factors and challenges that need to be addressed when implementing statistical methods