143 resultados para Hydrothermal methods
Resumo:
Laser beam welding (LBW) is applicable for a wide range of industrial sectors and has a history of fifty years. However, it is considered an unusual method with applications typically limited to welding of thin sheet metal. With a new generation of high power lasers there has been a renewed interest in thick section LBW (also known as keyhole laser welding). There was a growing body of publications during 2001-2011 that indicates an increasing interest in laser welding for many industrial applications, and in last ten years, an increasing number of studies have examined the ways to increase the efficiency of the process. Expanding the thickness range and efficiency of LBW makes the process a possibility for industrial applications dealing with thick metal welding: shipbuilding, offshore structures, pipelines, power plants and other industries. The advantages provided by LBW, such as high process speed, high productivity, and low heat input, may revolutionize these industries and significantly reduce the process costs. The research to date has focused on either increasing the efficiency via optimizing process parameters, or on the process fundamentals, rather than on process and workpiece modifications. The argument of this thesis is that the efficiency of the laser beam process can be increased in a straightforward way in the workshop conditions. Throughout this dissertation, the term “efficiency” is used to refer to welding process efficiency, specifically, an increase in efficiency refers an increase in weld’s penetration depth without increasing laser power level or decreasing welding speed. These methods are: modifications of the workpiece – edge surface roughness and air gap between the joining plates; modification of the ambient conditions – local reduction of the pressure in the welding zone; modification of the welding process – preheating of the welding zone. Approaches to improve the efficiency are analyzed and compared both separately and combined. These experimentally proven methods confirm previous findings and contribute additional evidence which expand the opportunities for laser beam welding applications. The focus of this research was primarily on the effects of edge surface roughness preparation and pre-set air gap between the plates on weld quality and penetration depth. To date, there has been no reliable evidence that such modifications of the workpiece give a positive effect on the welding efficiency. Other methods were tested in combination with the two methods mentioned above. The most promising - combining with reduced pressure method - resulted in at least 100% increase in efficiency. The results of this thesis support the idea that joining those methods in one modified process will provide the modern engineering with a sufficient tool for many novel applications with potential benefits to a range of industries.
Resumo:
Energy efficiency is an important topic when considering electric motor drives market. Although more efficient electric motor types are available, the induction motor remains as the most common industrial motor type. IEC methods for determining losses and efficiency of converter-fed induction motors were introduced recently with the release of technical specification IEC/TS 60034-2-3. Determining the induction motor losses with IEC/TS 60034-2-3 method 2-3-A and assessing the practical applicability of the method are the main interests of this study. The method 2-3-A introduces a specific test converter waveform to be used in the measurements. Differences between the induction motor losses with a test converter supply, and with a DTC converter supply are investigated. In the IEC methods, the tests are run at motor rated fundamental voltage, which, in practice, requires the frequency converter to be fed with a risen input voltage. In this study, the tests are run on both frequency converters with artificially risen converter input voltage, resulting in rated motor fundamental input voltage as required by IEC. For comparison, the tests are run with both converters on normal grid input voltage supply, which results in lower motor fundamental voltage and reduced flux level, but should be more relevant from practical point of view. According to IEC method 2-3-A, tests are run at rated motor load, and to ensure comparability of the results, the rated load is used in the grid-fed converter measurements, although motor is overloaded while producing the rated torque at reduced flux level. The IEC 2-3-A method requires also sinusoidal supply test results with IEC method 2-1-1B. Therefore, the induction motor losses with the recently updated IEC 60034-2-1 method 2-1-1B are determined at the motor rated voltage, but also at two lower motor voltages, which are according to the output fundamental voltages of the two network-supplied converters. The method 2-3-A was found to be complex to apply but the results were stable. According to the results, the method 2-3-A and the test converter supply are usable for comparing losses and efficiency of different induction motors at the operating point of rated voltage, rated frequency and rated load, but the measurements do not give any prediction of the motor losses at final application. One might therefore strongly criticize the method’s main principles. It seems, that the release of IEC 60034-2-3 as a technical specification instead of a final standard for now was justified, since the practical relevance of the main method is questionable.
Resumo:
Phenomena in cyber domain, especially threats to security and privacy, have proven an increasingly heated topic addressed by different writers and scholars at an increasing pace – both nationally and internationally. However little public research has been done on the subject of cyber intelligence. The main research question of the thesis was: To what extent is the applicability of cyber intelligence acquisition methods circumstantial? The study was conducted in sequential a manner, starting with defining the concept of intelligence in cyber domain and identifying its key attributes, followed by identifying the range of intelligence methods in cyber domain, criteria influencing their applicability, and types of operatives utilizing cyber intelligence. The methods and criteria were refined into a hierarchical model. The existing conceptions of cyber intelligence were mapped through an extensive literature study on a wide variety of sources. The established understanding was further developed through 15 semi-structured interviews with experts of different backgrounds, whose wide range of points of view proved to substantially enhance the perspective on the subject. Four of the interviewed experts participated in a relatively extensive survey based on the constructed hierarchical model on cyber intelligence that was formulated in to an AHP hierarchy and executed in the Expert Choice Comparion online application. It was concluded that Intelligence in cyber domain is an endorsing, cross-cutting intelligence discipline that adds value to all aspects of conventional intelligence and furthermore that it bears a substantial amount of characteristic traits – both advantageous and disadvantageous – and furthermore that the applicability of cyber intelligence methods is partly circumstantially limited.
Resumo:
Consumer neuroscience (neuromarketing) is an emerging field of marketing research which uses brain imaging techniques to study neural conditions and processes that underlie consumption. The purpose of this study was to map this fairly new and growing field in Finland by studying the opinions of both Finnish consumers and marketing professionals towards it and comparing the opinions to the current consumer neuroscience literature, and based on that evaluate the usability of brain imaging techniques as a marketing research method. Mixed methods research design was chosen for this study. Quantitative data was collected from 232 consumers and 28 marketing professionals by means of online surveys. Both respondent groups had either neutral opinions or lacked knowledge about the four themes chosen for this study: benefits, limitations and challenges, ethical issues and future prospects of consumer neuroscience. Qualitative interview data was collected from 2 individuals from Finnish neuromarketing companies to deepen insights gained from quantitative research. The four interview themes were the same as in the surveys and the interviewees’ answers were mostly in line with the current literature, although more optimistic about the future of the field. The interviews also exposed a gap between academic consumer neuroscience research and practical level applications. The results of this study suggest that there are still many unresolved challenges and relevant populations either have neutral opinions or lack information about consumer neuroscience. The practical level applications are, however, already being successfully used and this new field of marketing research is growing both globally and in Finland.
Resumo:
Active magnetic bearing is a type of bearing which uses magnetic field to levitate the rotor. These bearings require continuous control of the currents in electromagnets and data from position of the rotor and the measured current from electromagnets. Because of this different identification methods can be implemented with no additional hardware. In this thesis the focus was to implement and test identification methods for active magnetic bearing system and to update the rotor model. Magnetic center calibration is a method used to locate the magnetic center of the rotor. Rotor model identification is an identification method used to identify the rotor model. Rotor model update is a method used to update the rotor model based on identification data. These methods were implemented and tested with a real machine where rotor was levitated with active magnetic bearings and the functionality of the methods was ensured. Methods were developed with further extension in mind and also with the possibility to apply them for different machines with ease.