35 resultados para linear complexity
Resumo:
Convective transport, both pure and combined with diffusion and reaction, can be observed in a wide range of physical and industrial applications, such as heat and mass transfer, crystal growth or biomechanics. The numerical approximation of this class of problemscan present substantial difficulties clue to regions of high gradients (steep fronts) of the solution, where generation of spurious oscillations or smearing should be precluded. This work is devoted to the development of an efficient numerical technique to deal with pure linear convection and convection-dominated problems in the frame-work of convection-diffusion-reaction systems. The particle transport method, developed in this study, is based on using rneshless numerical particles which carry out the solution along the characteristics defining the convective transport. The resolution of steep fronts of the solution is controlled by a special spacial adaptivity procedure. The serni-Lagrangian particle transport method uses an Eulerian fixed grid to represent the solution. In the case of convection-diffusion-reaction problems, the method is combined with diffusion and reaction solvers within an operator splitting approach. To transfer the solution from the particle set onto the grid, a fast monotone projection technique is designed. Our numerical results confirm that the method has a spacial accuracy of the second order and can be faster than typical grid-based methods of the same order; for pure linear convection problems the method demonstrates optimal linear complexity. The method works on structured and unstructured meshes, demonstrating a high-resolution property in the regions of steep fronts of the solution. Moreover, the particle transport method can be successfully used for the numerical simulation of the real-life problems in, for example, chemical engineering.
Resumo:
Global illumination algorithms are at the center of realistic image synthesis and account for non-trivial light transport and occlusion within scenes, such as indirect illumination, ambient occlusion, and environment lighting. Their computationally most difficult part is determining light source visibility at each visible scene point. Height fields, on the other hand, constitute an important special case of geometry and are mainly used to describe certain types of objects such as terrains and to map detailed geometry onto object surfaces. The geometry of an entire scene can also be approximated by treating the distance values of its camera projection as a screen-space height field. In order to shadow height fields from environment lights a horizon map is usually used to occlude incident light. We reduce the per-receiver time complexity of generating the horizon map on N N height fields from O(N) of the previous work to O(1) by using an algorithm that incrementally traverses the height field and reuses the information already gathered along the path of traversal. We also propose an accurate method to integrate the incident light within the limits given by the horizon map. Indirect illumination in height fields requires information about which other points are visible to each height field point. We present an algorithm to determine this intervisibility in a time complexity that matches the space complexity of the produced visibility information, which is in contrast to previous methods which scale in the height field size. As a result the amount of computation is reduced by two orders of magnitude in common use cases. Screen-space ambient obscurance methods approximate ambient obscurance from the depth bu er geometry and have been widely adopted by contemporary real-time applications. They work by sampling the screen-space geometry around each receiver point but have been previously limited to near- field effects because sampling a large radius quickly exceeds the render time budget. We present an algorithm that reduces the quadratic per-pixel complexity of previous methods to a linear complexity by line sweeping over the depth bu er and maintaining an internal representation of the processed geometry from which occluders can be efficiently queried. Another algorithm is presented to determine ambient obscurance from the entire depth bu er at each screen pixel. The algorithm scans the depth bu er in a quick pre-pass and locates important features in it, which are then used to evaluate the ambient obscurance integral accurately. We also propose an evaluation of the integral such that results within a few percent of the ray traced screen-space reference are obtained at real-time render times.
Resumo:
[Abstract]
Resumo:
Abstract
Resumo:
Pro gradu -tutkielman tavoitteena on operationalisoida T&K- yhteistyön prosessimaista luonnetta, eli tarkemmin sanottuna analysoida T&K-yhteistyösuhteidenmuodostumista ja motiiveja. Tutkielman hypoteesit muodostettiin analysoimalla yrityksen teknologiastrategiaan perustuvia uuden tiedon tuonnin ja olemassa olevan tiedon hyväksikäytön oppimistavoitteita. Motivaatio T&K- yhteistyölle syntyy mahdollisuudesta T&K- projektien riskien jakamiseen. T&K- yhteistyön motiiveja analysoitiin transaktio- ja byrokratiahyötyjen, jotka pohjautuvat mittakaava- ja synergiaeduille, lähteitä arvioiden. Hypoteeseja testattiin 276 suomalaisen teollisuusyrityksen otoksella. Otoksen yrityksillä oliollut T&K- toimintaa. Otos perustuu kyselyyn, joka toteutettiin Lappeenrannan teknillisen yliopiston kauppatieteiden osastolla vuonna 2004. Hypoteeseja testattiin tilastollisilla menetelmillä; lineaarisella regressioanalyysillä, parillisten ja riippumattomien otosten t-testeillä. Validiteetti- ja multikollineaarisuusongelman todennäköisyydet on huomioitu. Hypoteesit vahvistuivat osittain. Teknologisella epävarmuudella ja monimutkaisuudella ei ole suoraa vaikutusta T&K- yhteistyön intensiivisyyteen. Teknologisella epävarmuudella on osittainen vaikutus teknologiastrategian valintaan. Yrityksen transaktio- ja byrokratiahyödyt riippuvat teknologisista kyvykkyyksistä. Vain korkean teknologian alan yritykset saavuttavat hyötyjä myös intensiivisesti T&K- yhteistyösuhteita koordinoimalla. Teknologiaintensiivisyyteen perustuvien erot perustuvat teknologisen tiedon luonteeseen toimialalla. Transaktiokustannusteorian mukainenkustannusten minimointi ja kompetenssiperusteisten teorioiden mukainen strategisointi selittävät komplementaarisesti T&K-yhteistyösuhteiden muodostumista ja yrityksen rajojen määräytymistä.
Resumo:
Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.
Resumo:
A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
The aim of the thesis is to study the principles of the permanent magnet linear synchronous motor (PMLSM) and to develop a simulator model of direct force controlled PMLSM. The basic motor model is described by the traditional two-axis equations. The end effects, cogging force and friction model are also included into the final motor model. Direct thrust force control of PMLSM is described and modelled. The full system model is proven by comparison with the data provided by the motor manufacturer.
Resumo:
In wireless communications the transmitted signals may be affected by noise. The receiver must decode the received message, which can be mathematically modelled as a search for the closest lattice point to a given vector. This problem is known to be NP-hard in general, but for communications applications there exist algorithms that, for a certain range of system parameters, offer polynomial expected complexity. The purpose of the thesis is to study the sphere decoding algorithm introduced in the article On Maximum-Likelihood Detection and the Search for the Closest Lattice Point, which was published by M.O. Damen, H. El Gamal and G. Caire in 2003. We concentrate especially on its computational complexity when used in space–time coding. Computer simulations are used to study how different system parameters affect the computational complexity of the algorithm. The aim is to find ways to improve the algorithm from the complexity point of view. The main contribution of the thesis is the construction of two new modifications to the sphere decoding algorithm, which are shown to perform faster than the original algorithm within a range of system parameters.
Resumo:
A steady increase in practical industrial applications has secured a place for linear motors. They provide high dynamics and high positioning accuracy of the motor, high reliability and durability of all components of the system. Machines with linear motors have very big perspectives in modern industry. This thesis enables to understand what a linear motor is, where they are used and what situation there is on their market nowadays. It can help to understand reasonability of applying linear motors on manufacture and benefits of its application.
Centralized Motion Control of a Linear Tooth Belt Drive: Analysis of the Performance and Limitations
Resumo:
A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimentalmeasurements. The measurements confirm the control design principles that are given in this thesis.