20 resultados para Sensing, Smartphone, Sensori
Resumo:
With the new age of Internet of Things (IoT), object of everyday such as mobile smart devices start to be equipped with cheap sensors and low energy wireless communication capability. Nowadays mobile smart devices (phones, tablets) have become an ubiquitous device with everyone having access to at least one device. There is an opportunity to build innovative applications and services by exploiting these devices’ untapped rechargeable energy, sensing and processing capabilities. In this thesis, we propose, develop, implement and evaluate LoadIoT a peer-to-peer load balancing scheme that can distribute tasks among plethora of mobile smart devices in the IoT world. We develop and demonstrate an android-based proof of concept load-balancing application. We also present a model of the system which is used to validate the efficiency of the load balancing approach under varying application scenarios. Load balancing concepts can be apply to IoT scenario linked to smart devices. It is able to reduce the traffic send to the Cloud and the energy consumption of the devices. The data acquired from the experimental outcomes enable us to determine the feasibility and cost-effectiveness of a load balanced P2P smart phone-based applications.
Resumo:
Selostus: Maatalousekosysteemien analysointi ja sadon ennustaminen kaukokartoituksen avulla
Resumo:
Abstract
Resumo:
Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the UV-visible spectral region of solar light. The advantages of this technique includes a good vertical resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are currently several satellite instruments continuously scanning the atmosphere and measuring the UVvisible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS) launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur during daytime occultation measurements. The global coverage of the satellite measurements is far better than any other ozone measurement technique, but still the measurements are sparse in the spatial domain. Measurements are also repeated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes dynamically. Assimilation methods are therefore needed in order to combine the information of the measurements with the atmospheric model. In recent years, the focus of assimilation algorithm research has turned towards filtering methods. The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty of the measurements, but also the uncertainty of the evolution model of the system. However, the computational cost of full blown EKF increases rapidly as the number of the model parameters increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimilation problem. The work in this thesis is devoted to the development of inversion methods for satellite instruments and the development of assimilation methods used with atmospheric models.
Resumo:
Learning from demonstration becomes increasingly popular as an efficient way of robot programming. Not only a scientific interest acts as an inspiration in this case but also the possibility of producing the machines that would find application in different areas of life: robots helping with daily routine at home, high performance automata in industries or friendly toys for children. One way to teach a robot to fulfill complex tasks is to start with simple training exercises, combining them to form more difficult behavior. The objective of the Master’s thesis work was to study robot programming with visual input. Dynamic movement primitives (DMPs) were chosen as a tool for motion learning and generation. Assuming a movement to be a spring system influenced by an external force, making this system move, DMPs represent the motion as a set of non-linear differential equations. During the experiments the properties of DMP, such as temporal and spacial invariance, were examined. The effect of the DMP parameters, including spring coefficient, damping factor, temporal scaling, on the trajectory generated were studied.
Resumo:
The mobile telecommunications industry has been going through an enormous revolution, especially after mid-1990 when smartphones were introduced to the market. As a consequence, the smartphone market’s dynamism is requesting companies to operate differently in the way they do business. After a long period occupying the leader position in the smartphones manufacturers’ rank, Nokia was outperformed by Apple and Samsung during 2011 and since then has been on the third place. Nevertheless, Nokia is battling for regaining the leadership in such a competitive and high-velocity growing market and that is what this research is about. This research covers the competitive and strategic forces that shape dynamic industries whereas the main purpose is to elucidate the main factors that contribute to a company’s above-average performance and ultimately determine its leadership in the mobile smartphone market. Therefore, this exploratory qualitative research was conducted as a desk research, which utilized various secondary sources of data in the knowledge area of strategic management such as theories about competitive advantages and dynamic capabilities of firms, innovation, and strategy. This research is enriched with a case study about Nokia: how the company has been organizing its corporate structure to support the strategies and hence how it has been competing in the smartphone market is analyzed, taking into account many contemporary data sources, including market analysts’ and business experts’ opinions. As a result of the classic literature exploration and the case study assay, a framework for deeper analysis of the competitiveness of firms in dynamic markets was developed. The conclusion that emerged from this research is that the success of a firm results from the interplay of various factors. To regain the leader position in the mobile smartphone market is a challenging task that requires Nokia to reinvent its core strategy for taking charge of the smartphones’ industry transformation through for example the adoption of the open innovation concept. It is imperative that Nokia designs and implement a breakthrough strategy as well as embraces the uncertainty of the smartphone market competition as an opportunity for discontinuous innovation development with the ultimate goal of recovering the leadership.
Resumo:
In this thesis, the gas sensing properties of porous silicon-based thin-film optical filters are explored. The effects of surface chemistry on the adsorption and desorption of various gases are studied in detail. Special emphasis is placed on investigating thermal carbonization as a stabilization method for optical sensing applications. Moreover, the possibility of utilizing the increased electrical conductivity of thermally carbonized porous silicon for implementing a multiparametric gas sensor, which would enable simultaneous monitoring of electrical and optical parameters, is investigated. In addition, different porous silicon-based optical filter-structures are prepared, and their properties in sensing applications are evaluated and compared. First and foremost, thermal carbonization is established as a viable method to stabilize porous silicon optical filters for chemical sensing applications. Furthermore, a multiparametric sensor, which can be used for increasing selectivity in gas sensing, is also demonstrated. Methods to improve spectral quality in multistopband mesoporous silicon rugate filters are studied, and structural effects to gas sorption kinetics are evaluated. Finally, the stability of thermally carbonized optical filters in basic environments is found to be superior in comparison to other surface chemistries currently available for porous silicon. The results presented in this thesis are of particular interest for developing novel reliable sensing systems based on porous silicon, e.g., label-free optical biosensors.
Resumo:
Tutkimuksen aiheena on Venäläisten rynnäkkökoneiden ja monitoimihävittäjien sensorija omasuojajärjestelmien tekninen tarkastelu ja niiden vaikutuksen ilmasta-maahan suorituskykyyn. Tutkimustyö käsittelee venäläisten rynnäkkökoneiden SU-24 ja SU-25 sekä monitoimihävittäjien SU-27SM ja MiG-29SMT sensoreita ja omasuojajärjestelmiä sekä käytettäviä asejärjestelmiä. Tutkimuksessa muodostetaan sensori-, omasuoja- ja asejärjestelmien avulla kokonaiskuva koneiden ilmasta-maahan suorituskyvystä. Tutkimuksessa pyritään vastaamaan seuraaviin kysymyksiin: Mistä muodostuu ilmastamaahan suorituskyky? Mitkä ovat Venäjän ilmavoimien yleisimmät rynnäkkökoneet ja monitoimihävittäjät ja mitä järjestelmiä niissä on? Mikä on koneen optimaalinen suorituskyky tarkasteltavaa kohdetta vastaan? Tutkimuksen sivutuotteena vastataan kysymykseen: Mikä on panssarivaunun tutkaheräte dBm² ja m² suureina? Tutkimuksen tutkimusmenetelminä on käytetty kirjallisuustutkimusta ja vertailevaa tutkimusmenetelmää. Järjestelmien julkisissa lähteissä ilmoitettu suorituskyky on pyritty todentamaan matemaattisesti laskien. PVTT:ssa toteutettujen simulointien avulla on voitu laskea lavettien tutkien havaitsemisetäisyyksiä. Tutkimustyön lähdeaineisto pohjautuu julkisiin lähteisiin. Suurin osa tutkimustyön lähteistä on internetistä julkaistuja artikkeleita ja teknisiä raportteja. Lähdeaineistoa lukemalla, vertailemalla ja analysoimalla on koostettu tietoa aiheesta. Rynnäkkökoneiden ja monitoimihävittäjien tutkien suorituskyvyn muodostamiseksi toteutettiin panssarivaunun 3Dmallin tutkaherätteen simulointi. Tulosten perusteella voidaan vertailla käytössä olevien tutkien suorituskykyä. Ilma-aseen suorituskyky pohjautuu pääosin käytettäviin sensoreihin ja laitteisiin. Sensorijärjestelmillä suunnistetaan, paikannetaan maali, osoitetaan maali käytettävällä asejärjestelmällä ja ohjataan asejärjestelmä haluttuun maaliin. Omasuojajärjestelmillä mahdollistetaan ilma-aseen toimiminen alueella vallitsevasta uhkasta huolimatta. Omasuojajärjestelmät koostuvat varoittimista ja aktiivisista vastatoimenpidejärjestelmistä.. Ilmasta-maahan suorituskykyyn vaikuttavat oleellisesti lavetin kyky havaita kohteita tutkalla, lämpökameralla ja TV-kameralla. Ilmasta-maahan suorituskykyyn vaikuttaa oleellisesti miltä etäisyydeltä kohde voidaan havaita ja miltä etäisyydeltä asejärjestelmä voidaan laukaista. Tutkimuksen perusteella voidaan todeta Venäjän ilmavoimilla olevan suorituskyvyltään hyvällä tasolla olevia koneita. Suorituskykyisten koneiden lukumäärä on hyvin pieni. Suurin osa operatiivisessa käytössä olevista koneista ei ole suorituskyvyltään riittävällä tasolla. Modernisaatioiden myötä Venäjän ilmavoimat saavuttavat riittävän suorituskyvyn rynnäkkökoneille ja monitoimihävittäjille.
Resumo:
The along-scan radiometric gradient causes severe interpretation problems in Landsat images of tropical forests. It creates a decreasing trend in pixel values with the column number of the image. In practical applications it has been corrected assuming the trend to be linear within structurally similar forests. This has improved the relation between floristic and remote sensing information, but just in some cases. I use 3 Landsat images and 105 floristic inventories to test the assumption of linearity, and to examine how the gradient and linear corrections affect the relation between floristic and Landsat data. Results suggest the gradient to be linear in infrared bands. Also, the relation between floristic and Landsat data could be conditioned by the distribution of the sampling sites and the direction in which images are mosaicked. Additionally, there seems to be a conjunction between the radiometric gradient and a natural east-west vegetation gradient common in Western Amazonia. This conjunction might have enhanced artificially correlations between field and remotely-sensed information in previous studies. Linear corrections may remove such artificial enhancement, but along with true and relevant spectral information about floristic patterns, because they can´t separate the radiometric gradient from a natural one.
Resumo:
Meandering rivers have been perceived to evolve rather similarly around the world independently of the location or size of the river. Despite the many consistent processes and characteristics they have also been noted to show complex and unique sets of fluviomorphological processes in which local factors play important role. These complex interactions of flow and morphology affect notably the development of the river. Comprehensive and fundamental field, flume and theoretically based studies of fluviomorphological processes in meandering rivers have been carried out especially during the latter part of the 20th century. However, as these studies have been carried out with traditional field measurements techniques their spatial and temporal resolution is not competitive to the level achievable today. The hypothesis of this study is that, by exploiting e increased spatial and temporal resolution of the data, achieved by combining conventional field measurements with a range of modern technologies, will provide new insights to the spatial patterns of the flow-sediment interaction in meandering streams, which have perceived to show notable variation in space and time. This thesis shows how the modern technologies can be combined to derive very high spatial and temporal resolution data on fluvio-morphological processes over meander bends. The flow structure over the bends is recorded in situ using acoustic Doppler current profiler (ADCP) and the spatial and temporal resolution of the flow data is enhanced using 2D and 3D CFD over various meander bends. The CFD are also exploited to simulate sediment transport. Multi-temporal terrestrial laser scanning (TLS), mobile laser scanning (MLS) and echo sounding data are used to measure the flow-based changes and formations over meander bends and to build the computational models. The spatial patterns of erosion and deposition over meander bends are analysed relative to the measured and modelled flow field and sediment transport. The results are compared with the classic theories of the processes in meander bends. Mainly, the results of this study follow well the existing theories and results of previous studies. However, some new insights regarding to the spatial and temporal patterns of the flow-sediment interaction in a natural sand-bed meander bend are provided. The results of this study show the advantages of the rapid and detailed measurements techniques and the achieved spatial and temporal resolution provided by CFD, unachievable with field measurements. The thesis also discusses the limitations which remain in the measurement and modelling methods and in understanding of fluvial geomorphology of meander bends. Further, the hydro- and morphodynamic models’ sensitivity to user-defined parameters is tested, and the modelling results are assessed against detailed field measurement. The study is implemented in the meandering sub-Arctic Pulmanki River in Finland. The river is unregulated and sand-bed and major morphological changes occur annually on the meander point bars, which are inundated only during the snow-melt-induced spring floods. The outcome of this study applies to sandbed meandering rivers in regions where normally one significant flood event occurs annually, such as Arctic areas with snow-melt induced spring floods, and where the point bars of the meander bends are inundated only during the flood events.
Resumo:
Potentiometric sensors are very attractive tools for chemical analysis because of their simplicity, low power consumption and low cost. They are extensively used in clinical diagnostics and in environmental monitoring. Modern applications of both fields require improvements in the conventional construction and in the performance of the potentiometric sensors, as the trends are towards portable, on-site diagnostics and autonomous sensing in remote locations. The aim of this PhD work was to improve some of the sensor properties that currently hamper the implementation of the potentiometric sensors in modern applications. The first part of the work was concentrated on the development of a solid-state reference electrode (RE) compatible with already existing solid-contact ion-selective electrodes (ISE), both of which are needed for all-solid-state potentiometric sensing systems. A poly(vinyl chloride) membrane doped with a moderately lipophilic salt, tetrabutylammonium-tetrabutylborate (TBA-TBB), was found to show a satisfactory stability of potential in sample solutions with different concentrations. Its response time was nevertheless slow, as it required several minutes to reach the equilibrium. The TBA-TBB membrane RE worked well together with solid-state ISEs in several different situations and on different substrates enabling a miniature design. Solid contacts (SC) that mediate the ion-to-electron transduction are crucial components of well-functioning potentiometric sensors. This transduction process converting the ionic conduction of an ion-selective membrane to the electronic conduction in the circuit was studied with the help of electrochemical impedance spectroscopy (EIS). The solid contacts studied were (i) the conducting polymer (CP) poly(3,4-ethylienedioxythiophene) (PEDOT) and (ii) a carbon cloth having a high surface area. The PEDOT films were doped with a large immobile anion poly(styrene sulfonate) (PSS-) or with a small mobile anion Cl-. As could be expected, the studied PEDOT solid-contact mediated the ion-toelectron transduction more efficiently than the bare glassy carbon substrate, onto which they were electropolymerized, while the impedance of the PEDOT films depended on the mobility of the doping ion and on the ions in the electrolyte. The carbon cloth was found to be an even more effective ion-to-electron transducer than the PEDOT films and it also proved to work as a combined electrical conductor and solid contact when covered with an ion-selective membrane or with a TBA-TBB-based reference membrane. The last part of the work was focused on improving the reproducibility and the potential stability of the SC-ISEs, a problem that culminates to the stability of the standard potential E°. It was proven that the E° of a SC-ISE with a conducting polymer as a solid contact could be adjusted by reducing or oxidizing the CP solid contact by applying current pulses or a potential to it, as the redox state of the CP solid-contact influences the overall potential of the ISE. The slope and thus the analytical performance of the SC-ISEs were retained despite the adjustment of the E°. The shortcircuiting of the SC-ISE with a conventional large-capacitance RE was found to be a feasible instrument-free method to control the E°. With this method, the driving force for the oxidation/reduction of the CP was the potential difference between the RE and the SC-ISE, and the position of the adjusted potential could be controlled by choosing a suitable concentration for the short-circuiting electrolyte. The piece-to-piece reproducibility of the adjusted potential was promising, and the day-today reproducibility for a specific sensor was excellent. The instrumentfree approach to control the E° is very attractive considering practical applications.
Resumo:
Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.