22 resultados para Mixture of contaminants
Resumo:
Marine mammals are exposed to persistent organic pollutants (POPs), which may be biotransformed to metabolites some of which are highly toxic. Both POPs and their metabolites may lead to adverse health effects, which have been studied using various biomarkers. Changes in endocrine homeostasis have been suggested to be sensitive biomarkers for contaminant-related effects. The overall objective of this doctoral thesis was to investigate biotransformation capacity of POPs and their potential endocrine disruptive effects in two contrasting ringed seal populations from the low contaminated Svalbard area and from the highly contaminated Baltic Sea. Biotransformation capacity was studied by determining the relationships between congener-specific patterns and concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs) and their hydroxyl (OH)- and/or methylsulfonyl (MeSO2)-metabolites, and catalytic activities of hepatic xenobiotic-metabolizing phase I and II enzymes. The results suggest that the biotransformation of PCBs, PBDEs and toxaphenes in ringed seals depends on the congener-specific halogen-substitution pattern. Biotransformation products detected in the seals included OH-PCBs, MeSO2-PCBs and –DDE, pentachlorophenol, 4-OHheptachlorostyrene, and to a minor extent OH-PBDEs. The effects of life history state (moulting and fasting) on contaminant status and potential biomarkers for endocrine disruption, including hormone and vitamin homeostasis, were investigated in the low contaminated ringed seal population from Svalbard. Moulting/fasting status strongly affected thyroid, vitamin A and calcitriol homeostasis, body condition and concentrations of POPs and their OH-metabolites. In contrast, moulting/fasting status was not associated with variations in vitamin E levels. Endocrine disruptive effects on multiple endpoints were investigated in the two contrasting ringed seal populations. The results suggest that thyroid, vitamin A and calcitriol homeostasis may be affected by the exposure of contaminants and/or their metabolites in the Baltic ringed seals. Complex and non-linear relationships were observed between the contaminant levels and the endocrine variables. Positive relationships between circulating free and total thyroid hormone concentration ratios and OH-PCBs suggest that OH-PCBs may mediate the disruption of thyroid hormone transport in plasma. Species differences in thyroid and bone-related effects of contaminants were studied in ringed and grey seals from low contaminated references areas and from the highly contaminated Baltic Sea. The results indicate that these two species living at the same environment approximately at the same trophic level respond in a very different way to contaminant exposure. The results of this thesis suggest that the health status of the Baltic ringed seals has still improved during the last decade. PCB and DDE levels have decreased in these seals and the contaminant-related effects are different today than a decade ago. The health of the Baltic ringed seals is still suggested to be affected by the contaminant exposure. At the present level of the contaminant exposure the Baltic ringed seals seem to be at a zone where their body is able to compensate for the contaminant-mediated endocrine disruption. Based on the results of this thesis, several recommendations that could be applied on monitoring and assessing risk for contaminant effects are provided. Circulating OH-metabolites should be included in monitoring and risk assessment programs due to their high toxic potential. It should be noted that endogenous variables may have complex and highly variable responses to contaminant exposure including non-linear responses. These relationships may be further confounded by life history status. Therefore, it is highly recommended that when using variables related to endocrine homeostasis to investigate/monitor or assess the risk of contaminant effects in seals, the life history status of the animal should be carefully taken into consideration. This applies especially when using thyroid, vitamin A or calcitriolrelated parameters during moulting/fasting period. Extrapolations between species for assessing risk for contaminant effects in phocid seals should be avoided.
Resumo:
Concerns have increased regarding the detection of endocrine-disrupting compounds in the effluents of sewage treatment plants (STPs). These compounds are able to disrupt normal function of the endocrine system of living organisms even at trace concentrations. Natural and synthetic steroid estrogens (SEs) are believed to be responsible for the majority of the endocrine-disrupting effects. Municipal sewage, the main source of SEs in the environment, is a complex mixture of a wide range of pollutants at concentrations much higher than those of SEs. Low concentrations of SEs in the presence of copollutants thus make their removal problematic. The main objectives of the present work were to study the potential of photocatalytic oxidation (PCO) to effectively treat SE-containing aqueous solutions and to identify the optimum conditions for such treatment. The results showed that SEs can be effectively degraded photocatalytically. Due to the adsorption properties of SEs on the TiO2 photocatalyst surface alkaline medium was found to be beneficial for SE oxidation despite the presence of co-pollutants in concentrations characteristic for the sanitary fraction of municipal sewage. The potential of PCO to selectively oxidise SEs was examined in the presence of copollutants of the sanitary fraction of sewage - urea, saccharose and human urine. The impact of ethanol, often used as a solvent in the preparation of SE stock solutions, was also studied and the results indicated the need to use organic solvent-free solutions for the study of SE behaviour. Photocatalytic oxidation of SEs appeared to be indifferent towards the presence of urea in concentrations commonly found in domestic sewage. The effect of other co-pollutants under consideration was far weaker than could be expected from their concentrations, which are from one hundred to a few thousands times higher than those of the SEs. Although higher concentrations can dramatically slow down the PCO of SEs, realistic concentrations of co-pollutants characteristic for the sanitary fraction of domestic sewage allowed selective removal of SEs. This indicates the potential of PCO to be a selective oxidation method for SE removal from the separate sanitary fraction of municipal sewage.
Resumo:
High reflectivity to laser light, alloying element evaporation during high power laser welding makes aluminium alloys highly susceptibility to weld defects such as porosity, cracking and undercutting. The dynamic behaviour of the keyhole, due to fluctuating plasma above the keyhole and the vaporization ofthe alloying elements with in the keyhole, is the key problem to be solved for the improvement of the weld quality and stabilization of the keyhole dynamics isperhaps the single most important development that can broaden the application of laser welding of aluminium alloys. In laser welding, the shielding gas is commonly used to stabilize the welding process, to improve the welded joint features and to protect the welded seam from oxidation. The chemicalcomposition of the shielding gas is a key factor in achieving the final qualityof the welded joints. Wide range of shielding gases varying from the pure gasesto complex mixtures based on helium, argon, nitrogen and carbon dioxide are commercially available. These gas mixtures should be considered in terms of their suitability during laser welding of aluminium alloys to produce quality welds. The main objective of the present work is to study the effect of the shielding gascomposition during laser welding of aluminium alloys. Aluminium alloy A15754 was welded using 3kW Nd-YAG laser (continuous wave mode). The alloy samples were butt welded with different shielding gases (pure and mixture of gases) so that high quality welds with high joint efficiencies could be produced. It was observed that the chemical composition of the gases influenced the final weld quality and properties. In general, the mixture gases, in correct proportions, enabled better utilisation of the properties of the mixing gases, stabilized the welding process and produced better weld quality compared to the pure shielding gases.
Resumo:
The nature of client-server architecture implies that some modules are delivered to customers. These publicly distributed commercial software components are under risk, because users (and simultaneously potential malefactors) have physical access to some components of the distributed system. The problem becomes even worse if interpreted programming languages are used for creation of client side modules. The language Java, which was designed to be compiled into platform independent byte-code is not an exception and runs the additional risk. Along with advantages like verifying the code before execution (to ensure that program does not produce some illegal operations)Java has some disadvantages. On a stage of byte-code a java program still contains comments, line numbers and some other instructions, which can be used for reverse-engineering. This Master's thesis focuses on protection of Java code based client-server applications. I present a mixture of methods to protect software from tortious acts. Then I shall realize all the theoretical assumptions in a practice and examine their efficiency in examples of Java code. One of the criteria's to evaluate the system is that my product is used for specialized area of interactive television.
Resumo:
The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.
Resumo:
A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.
Resumo:
Ruskeisiin kierrätysmassoihin kuuluu kulutuksen kannalta tärkeimpänä laatuna OCC (old corrugated containers). OCC sisältää noin 70-100% aaltopahvia eli pääasiassa se koostuu valkaisemattomasta kemiallisesta massasta. OCC uusiomassan ensisijainen käyttökohde on aaltopahvin valmistus. OCC:n kierrätyskuituprosessissa syntyy merkittäviä määriä rejektiä. Rejektin määrä riippuu paljolti kierrätettävän materiaalin laadusta ja puhtaudesta, mutta myös tulevan massan käyttötarkoituksesta sekä prosessiolosuhteista. OCC-prosessissa rejektoituvan aineksen määrä voi nousta korkeaksi, mikäli kierrätettävä materiaali sisältää märkälujaliimoja tai muuten raskaasti liimattuja komponentteja sekä runsaasti kontaminantteja, kuten muoveja, teippejä ja metalleja. Keskimäärin OCC-rejekti sisältää 30-60% kiinteää ainesta, 30-90% (kuivapaino) kuituja, 5-70% (kuivapaino) muoveja ja 1-10% (kuivapaino) tuhkaa. Syntynyt rejekti voidaan polttaa energiaksi tai käyttää maantäyttöaineena. Harvinaisempia sovelluksia rejektin käsittelyssä ovat rejektin kuitujen talteenotto uudelleenprosessointia varten tai alkoholin ja levuliinihapon tuottamiseen. Rejektin asianmukaisella käsittelyllä voidaan vähentää kaatopaikkakustannuksia, sekä parantaa kierrätysprosessin tuottavuutta. Tämän työn tarkoituksena oli tutkia biokemiallisen käsittelyn mahdollisuudet OCC-rejektin hajotuksessa. Alustavissa laboratoriomittakaavan kokeissa etsittiin sopiva käsittelytapa, joka toteutettiin sitten pilot plant -mittakaavassa. Tulokset osoittavat, että biokemiallisen käsittelyn avulla rejekti voidaan hajottaa jolloin jätteenkäsittelykustannukset pienenevät ja kierrätyskuituprosessin taloudellisuus paranee.
Resumo:
Paperin ja kartongin kierrätys lisääntyy taloudellisten intressien ja ympäristöhygieenisten tavoitteiden takia jatkuvasti. Lisääntyvän kierrätyksen myötä myös paperin ja kartongin epäpuhtauksien määrä kasvaa, mikä huonontaa kierrätysraaka-aineen laatua. Tämän työn tarkoituksena on antaa perustietoa eräästä kartongin päällystyksessä käytettävästä hydrofobisesta materiaalista, epäpuhtaan kartongin kierrätyksestä sekä ongelmista, joita epäpuhtaan kartongin kierrätyksestä syntyy. Kierrätyskuidun fraktiointi on yksinkertainen prosessi aallotuskartongin, testilainerin ja taivekartongin valmistuksessa. Kierrätysprosessin ensisijaisia tehtäviä ovat kuidutus ja epäpuhtauksien poisto sekä näiden epäpuhtauksien vaikutusten eliminointi, jotta kierrätysmassan laatuvaatimukset täyttyvät. Lisääntynyt epäpuhtauksien määrä raaka-aineessa asettaa vaatimuksia lajitteluprosessin kehittämiseksi. Nykyaikaisilla kierrätyslaitoksilla ei pystytä käsittelemään ylettömiä määriä epäpuhtauksia. Epäpuhtaudet aiheuttavat ongelmia ajettavuuteen ja heikentävät tuotteen laatua kierrätysprosessissa. Epäpuhtauksien poistoon on olemassa useita teknisiä ratkaisuja, mutta minkään niistä ei ole todettu täysin poistavan kaikkia ongelmia. Työn kokeellisessa osassa kartongin päällystykseen käytettävää hydrofobista materiaalia analysoitiin erilaisin menetelmin. Tutkittiin myös erilaisten olosuhteiden vaikutusta tämän materiaalin poistoon.
Resumo:
Porous silicon (PSi) is a promising material to be utilized in drug delivery formulations. The release rate of the drug compound can be controlled by changing the pore properties and surface chemistry of PSi. The loading of a poorly soluble drug into mesoporous silicon particles enhances its dissolution in the body. The drug loading is based on adsorption. The attainable maximum loaded amount depends on the properties of the drug compound and the PSi material, and on the process conditions. The loading solvent also essentially affects the adsorption process. The loading of indomethacin into PSi particles with varying surface modification was studied. Solvent mixtures were applied in the loading, and the loaded samples were analyzed with thermal analysis methods. The best degree of loading was obtained using a mixture of dichloromethane and methanol. The drug loads varied from 7.7 w-% to 26.8 w-%. A disturbing factor in the loading experiments was the tendency of indomethacin to form solvates with the solvents applied. In addition, the physical form and stability of indomethacin loaded in PSi and silica particles were studied using Raman spectroscopy. In the case of silica, the presence of crystalline drug as well as the polymorph form can be detected, but the method proved to be not applicable for PSi particles.
Resumo:
Stable isotope fractionation analysis of contaminants is a promising method for assessing biodegradation of contaminants in natural systems. However, standard procedures to determine stable isotope fractionation factors, so far, neglect the influence of pollutant bioavailability on stable isotope fractionation. On a microscale, bioavailability may vary due to the spatio-temporal variability of local contaminant concentrations, limited effective diffusivities of the contaminants and cell densities, and thus, the pollutant supply might not meet the intrinsic degradation capacity of the microorganisms. The aim of this study was to demonstrate the effect of bioavailability on the apparent stable isotope fractionation, using a multiphase laboratory setup. The data gained show that the apparent isotope fractionation factors observed during biodegradation processes depend on the amount of biomass and/or the rate of toluene mass transfer from a second to the aqueous phase. They indicate that physico-chemical processes need to be taken into account when stable isotope fractionation analysis is used for the quantification of environmental contaminant degradation.
Resumo:
This work gives a reader basic knowledge about mineralogy and mineral processing. Main focus of this work was on flotation process and pulp electrochemistry on flotation. Three different sulphide poor ores are examined on experimental part. Platinum and palladium were the noble metals, which were contained into studied ores. Electrochemistry of flotation of PGE minerals on sulphide poor ores has been examined only slightly. Bench scale flotation test was used in this study. Chalcopyrite, nickel-pentlandite, pyrite, platinum and pH electrodes were used to investigation of pulp electrochemistry during flotation tests. Effects of grinding media, carbon dioxide atmosphere in grinding and mixture of carbon dioxide and air as flotation gas to PGE flotation and electrochemistry of flotation were studied. Stainless steel grinding media created more oxidising pulp environment to flotation than mild steel grinding media. Concentrate quality improved also with stainless steel grinding media, but the recovery was remarkably poorer, than with mild steel grinding media. Carbon dioxide atmosphere in grinding created very reducing pulp environment, which caused very good concentrate quality. But the recovery was again poorer than with normal mild steel grinding media. Mixture of carbon dioxide and air as flotation gas improved PGE recovery with some ores, but not always. Effect of carbon dioxide to pulp electrochemistry was detected mainly via pH-value.
Resumo:
The first objective of this study was to find out reliable laboratory methods to predict the effect of enzymes on specific energy consumption and fiber properties of TMP pulp. The second one was to find with interactive software called “Knowledge discovery in databases” enzymes or other additives that can be used in finding a solution to reduce energy consumption of TMP pulp. The chemical composition of wood and enzymes, which have activity on main wood components were presented in the literature part of the work. The results of previous research in energy reduction of TMP process with enzymes were also highlighted. The main principles of knowledge discovery have been included in literature part too. The experimental part of the work contains the methods description in which the standard size chip, crushed chip and fiberized spruce chip (fiberized pulp) were used. Different types of enzymatic treatment with different dosages and time were tested during the experiments and showed. Pectinase, endoglucanase and mixture of enzymes were used for evaluation of method reliability. The fines content and fiber length of pulp was measured and used as evidence of enzymes' effect. The refining method with “Bauer” laboratory disc refiner was evaluated as not highly reliable. It was not able to provide high repeatability of results, because of uncontrolled feeding capacity and refining consistency. The refining method with Valley refiner did not have a lot of variables and showed stable and repeatable results in energy saving. The results of experiments showed that efficient enzymes impregnation is probably the main target with enzymes application for energy saving. During the work the fiberized pulp showed high accessibility to enzymatic treatment and liquid penetration without special impregnating equipment. The reason was that fiberized pulp has larger wood surface area and thereby the contact area between the enzymatic solution and wood is also larger. Standard size chip and crushed chip treatment without special impregnator of enzymatic solution was evaluated as not efficient and did not show visible, repeatable results in energy consumption decrease. Thereby it was concluded that using of fiberized pulp and Valley refiner for measurements of enzymes' effectiveness in SEC decrease is more suitable than normal size chip and crushed chip with “Bauer” refiner. Endoglucanase with 5 kg/t dosage showed about 20% energy consumption decrease. Mixture of enzymes with 1.5 kg/t dosage showed about 15% decrease of energy consumption during the refining. Pectinase at different dosages and treatment times did not show significant effect on energy consumption. Results of knowledge discovery in databases showed the xylanase, cellulase and pectinase blend as most promising for energy reduction in TMP process. Surfactants were determined as effective additives for energy saving with enzymes.
Resumo:
Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.
Resumo:
The environmental impacts of a single mine often remain local, but acidic and metal-rich acid mine drainage (AMD) from the waste materials may pose a serious threat to adjacent surface waters and their ecosystems. Testate amoebae (thecamoebian) analysis was used together with lake sediment geochemistry to study and evaluate the ecological effects of sulphidic metal mines on aquatic environments. Three different mines were included in the study: Luikonlahti Cu-mine in Kaavi, eastern Finland, Haveri Cu-Au mine in Ylöjärvi, southern Finland and Pyhäsalmi Zn-Cu-S mine in Pyhäjärvi, central Finland. Luikonlahti and Haveri are closed mines, but Pyhäsalmi is still operating. The sampling strategy was case specific, and planned to provide a representative sediment sample series to define natural background conditions, to detect spatial and temporal variations in mine impacts, to evaluate the possible recovery after the peak contamination, and to distinguish the effects of other environmental factors from the mining impacts. In the Haveri case, diatom analyses were performed alongside thecamoebian analysis to evaluate the similarities and differences between the two proxies. The results of the analyses were investigated with multivariate methods (direct and indirect ordinations, diversity and distance measure indices). Finally, the results of each case study were harmonized, pooled, and jointly analyzed to summarize the results for this dissertation. Geochemical results showed broadly similar temporal patterns in each case. Concentrations of ions in the pre-disturbance samples defined the natural baseline against which other results were compared. The beginning of the mining activities had only minor impacts on sediment geochemistry, mainly appearing as an increased clastic input into the lakes at Haveri and Pyhäsalmi. The active mining phase was followed by the metallic contamination and, subsequently, by the most recent change towards decreased but still elevated metal concentrations in the sediments. Because of the delay in the oxidation of waste material and formation of AMD, the most intense, but transient metal contamination phase occurred in the post-mining period at Luikonlahti and Haveri. At Pyhäsalmi, the highest metal contamination preceded effluent mitigation actions. Spatial gradients were observed besides the temporal evolution in both the pre-disturbance and mine-impacted samples from Luikonlahti and Pyhäsalmi. The geochemical gradients varied with distance from the main source of contaminants (dispersion and dilution) and with water depth (redox and pH). The spatial extent of the highest metal contamination associated with these mines remained rather limited. At Haveri, the metallic impact was widespread, with the upstream site in another lake basin found to be contaminated. Changes in thecamoebian assemblages corresponded well with the geochemical results. Despite some differences, the general features and ecological responses of the faunal assemblages were rather similar in each lake. Constantly abundant strains of Difflugia oblonga, Difflugia protaeiformis and centropyxids formed the core of these assemblages. Increasing proportions of Cucurbitella tricuspis towards the surface samples were found in all of the cases. The results affirmed the indicator value of some already known indicator forms, but such as C. tricuspis and higher nutrient levels, but also elicited possible new ones such as D. oblonga ‘spinosa’ and clayey substrate, high conductivity and/or alkalinity, D. protaeiformis ‘multicornis’ and pH, water hardness and the amount of clastic material and Centropyxis constricta ‘aerophila’ and high metal and S concentrations. In each case, eutrophication appeared to be the most important environmental factor, masking the effects of other variables. Faunal responses to high metal inputs in sediments remained minor, but were nevertheless detectable. Besides the trophic state of the lake, numerical methods suggested overall geochemical conditions (pH, redox) to be the most important factor at Luikonlahti, whereas the Haveri results showed the clearest connection between metals and amoebae. At Pyhäsalmi, the strongest relationships were found between Ca- and S-rich present loading, redox conditions and substrate composition. Sediment geochemistry and testate amoeba analysis proved to be a suitable combination of methods to detect and describe the aquatic mine impacts in each specific case, to evaluate recovery and to differentiate between the effects of different anthropogenic and natural environmental factors. It was also suggested that aquatic mine impacts can be significantly mitigated by careful design and after-care of the waste facilities, especially by reducing and preventing AMD. The case-specific approach is nevertheless necessary because of the unique characteristics of each mine and variations in the environmental background conditions.
Resumo:
Oxy-fuel combustion in a circulating fluidized bed (CFB) boiler appears to be a promising option for capturing CO2 in power plants. Oxy-fuel combustion is based on burning of fuel in the mixture of oxygen and re-circulated flue gas instead of air. Limestone (CaCO3) is typically used for capturing of SO2 in CFB boilers where limestone calcines to calcium oxide (CaO). Because of high CO2 concentration in oxy-fuel combustion, calcination reaction may be hindered or carbonation, the reverse reaction of calcination, may occur. Carbonation of CaO particles can cause problems especially in the circulation loop of a CFB boiler where temperature level is lower than in the furnace. The aim of the thesis was to examine carbonation of CaO in a fluidized bed heat exchanger of a CFB boiler featuring oxy-fuel combustion. The calculations and analyzing were based on measurement data from an oxy-fuel pilot plant and on 0-dimensional (0D) gas balance of a fluidized bed heat exchanger. Additionally, the objective was to develop a 1-dimensional (1D) model of a fluidized bed heat exchanger by searching a suitable pre-exponential factor for a carbonation rate constant. On the basis of gas measurement data and the 0D gas balance, it was found that the amount of fluidization gas decreased as it flew through the fluidized bed heat exchanger. Most likely the reason for this was carbonation of CaO. It was discovered that temperature has a promoting effect on the reaction rate of carbonation. With the 1D model, a suitable pre-exponential factor for the equation of carbonation rate constant was found. However, during measurements there were several uncertainties, and in the calculations plenty of assumptions were made. Besides, the temperature level in the fluidized bed heat exchanger was relatively low during the measurements. Carbonation should be considered when fluidized bed heat exchangers and the capacity of related fans are designed for a CFB boiler with oxy-fuel combustion.