150 resultados para Gas tungsten arc welding.
Resumo:
Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.
Resumo:
The need for industries to remain competitive in the welding business, has created necessity to develop innovative processes that can exceed customer’s demand. Significant development in improving weld efficiency, during the past decades, still have their drawbacks, specifically in the weld strength properties. The recent innovative technologies have created smallest possible solid material known as nanomaterial and their introduction in welding production has improved the weld strength properties and to overcome unstable microstructures in the weld. This study utilizes a qualitative research method, to elaborate the methods of introducing nanomaterial to the weldments and the characteristic of the welds produced by different welding processes. The study mainly focuses on changes in the microstructural formation and strength properties on the welded joint and also discusses those factors influencing such improvements, due to the addition of nanomaterials. The effect of nanomaterial addition in welding process modifies the physics of joining region, thereby, resulting in significant improvement in the strength properties, with stable microstructure in the weld. The addition of nanomaterials in the welding processes are, through coating on base metal, addition in filler metal and utilizing nanostructured base metal. However, due to its insignificant size, the addition of nanomaterials directly to the weld, would poses complications. The factors having major influence on the joint integrity are dispersion of nanomaterials, characteristics of the nanomaterials, quantity of nanomaterials and selection of nanomaterials. The addition of nanomaterials does not affect the fundamental properties and characteristics of base metals and the filler metal. However, in some cases, the addition of nanomaterials lead to the deterioration of the joint properties by unstable microstructural formations. Still research are ongoing to achieve high joint integrity, in various materials through different welding processes and also on other factors that influence the joint strength.
Resumo:
Welding is one of the most important process of modern industry. Welding technology is used in the manufacture and repair a wide variety of products from different metals and alloys. In this thesis the different aspects of arc welding were discussed, such as stability and control of welding arc, power supplies for arc welding (especially the welding inverters because it is the most modern welding power source). All parameters of power source have influence on the arc parameters and its by-turn influence on quality. The ways of control for arc welding inverter power sources have been considered. Calculations and modeling in Matlab/Simulink were done for PI control method. All parameters of power source have influence on the arc parameters and its by-turn influence on quality.
Resumo:
This thesis is part of the Arctic Materials Technologies Development –project. The research of the thesis was done in cooperation with Arctech Helsinki Shipyard, Lappeenranta University of Technology and Kemppi Oy. Focus of the thesis was to study narrow gap flux-cored arc welding of two high strength steels with three different groove angles of 20°, 10° and 5°. Welding of the 25 mm thick E500 TMCP and 10 mm thick EH36 steels was mechanized and Kemppi WisePenetration and WiseFusion processes were tested with E500 TMCP steel. EH36 steel test pieces were welded without Wise processes. Shielding gases chosen were carbon dioxide and a mixture of argon and carbon dioxide. Welds were tested with non-destructive and destructive testing methods. Radiographic, visual, magnetic particle and liquid penetrant testing proved that welds were free from imperfections. After non-destructive testing, welds were tested with various destructive testing methods. Impact strength, bending, tensile strength and hardess tests proved that mechanized welding and Wise processes produced quality welds with narrower gap. More inconsistent results were achieved with test pieces welded without Wise processes. Impact test results of E500 TMCP exceeded the 50 J limit on weld, set by Russian Maritime Register of Shipping. EH36 impact test results were much closer to the limiting values of 34 J on weld and 47 on HAZ. Hardness values of all test specimens were below the limiting values. Bend testing and tensile testing results fulfilled the the Register requirements. No cracking or failing occurred on bend test specimens and tensile test results exceeded the Register limits of 610 MPa for E500 TMCP and 490 MPa for EH36.
Resumo:
Efficient production and consumption of energy has become the top priority of national and international policies around the world. Manufacturing industries have to address the requirements of the government in relation to energy saving and ecologically sustainable products. These industries are also concerned with energy and material usage due to their rising costs. Therefore industries have to find solutions that can support environmental preservation yet maintain competitiveness in the market. Welding, a major manufacturing process, consumes a great deal of material and energy. It is a crucial process in improving a product’s life-cycle cost, strength, quality and reliability. Factors which lead to weld related inefficiencies have to be effectively managed, if industries are to meet their quality requirements and fulfil a high-volume production demand. Therefore it is important to consider some practical strategies in welding process for optimization of energy and material consumption. The main objective of this thesis is to explore the methods of minimizing the ecological footprint of the welding process and methods to effectively manage its material and energy usage in the welding process. The author has performed a critical review of the factors including improved weld power source efficiency, efficient weld techniques, newly developed weld materials, intelligent welding systems, weld safety measures and personnel training. The study lends strong support to the fact that the use of eco-friendly welding units and the quality weld joints obtained with minimum possible consumption of energy and materials should be the main directions of improvement in welding systems. The study concludes that, gradually implementing the practical strategies mentioned in this thesis would help the manufacturing industries to achieve on the following - reduced power consumption, enhanced power control and manipulation, increased deposition rate, reduced cycle time, reduced joint preparation time, reduced heat affected zones, reduced repair rates, improved joint properties, reduced post-weld operations, improved automation, improved sensing and control, avoiding hazardous conditions and reduced exposure of welder to potential hazards. These improvement can help in promotion of welding as a green manufacturing process.
Resumo:
In this study, an infrared thermography based sensor was studied with regard to usability and the accuracy of sensor data as a weld penetration signal in gas metal arc welding. The object of the study was to evaluate a specific sensor type which measures thermography from solidified weld surface. The purpose of the study was to provide expert data for developing a sensor system in adaptive metal active gas (MAG) welding. Welding experiments with considered process variables and recorded thermal profiles were saved to a database for further analysis. To perform the analysis within a reasonable amount of experiments, the process parameter variables were gradually altered by at least 10 %. Later, the effects of process variables on weld penetration and thermography itself were considered. SFS-EN ISO 5817 standard (2014) was applied for classifying the quality of the experiments. As a final step, a neural network was taught based on the experiments. The experiments show that the studied thermography sensor and the neural network can be used for controlling full penetration though they have minor limitations, which are presented in results and discussion. The results are consistent with previous studies and experiments found in the literature.
Resumo:
Alumiiniveneissä hitsauksen aiheuttamat muodonmuutokset ovat usein erittäin haitallisia, koska niiden aiheuttamat mittamuutokset ja ulkonäölliset haitat alentavat tuotteen laatua sekä arvoa. Monissa tapauksissa myös hitsausliitoksen suorituskyky heikentyy ja lisäksi hitsausmuodonmuutokset voivat aiheuttaa toiminnallisia ongelmia alumiiniveneiden runkorakenteisiin. Tästä johtuen hitsausmuodonmuutosten hallinta ja minimointi ovat erityisen tärkeitä tekijöitä pyrittäessä parantamaan alumiiniveneiden laatua ja kustannustehokkuutta sekä kasvattamaan alumiinivenealan kilpailukykyä. Tässä diplomityössä tutkittiin robotisoidun kaasukaarihitsauksen aiheuttamia muodonmuutoksia sekä niiden hallintaa alumiinista valmistettujen työ- ja huviveneiden runkorakenteissa. Työssä perehdyttiin nykyaikaiseen alumiinivenevalmistukseen sekä hitsattujen rakenteiden yleisiin lujuusopin teorioihin ja käyttäytymismalleihin. Alumiinin hitsausmuodonmuutosten tutkimuksissa suoritettiin käytännön hitsauskokeita, joiden kohteina olivat alumiiniveneissä käytetyt rakenneratkaisut ja liitostyypit. Työn tavoitteena oli määrittää alumiinin hitsauksessa syntyviin muodonmuutoksiin keskeisesti vaikuttavia tekijöitä ja parametreja. Tutkimustulosten perusteella pyrittiin esittämään ratkaisuja alumiiniveneiden rakenteisiin aiheutuvien hitsausmuodonmuutosten vähentämiseksi ja hallitsemiseksi. Alumiinirakenteissa hitsausmuodonmuutokset ovat hyvin tapauskohtaisia, koska usein niiden syntyminen määräytyy monen tekijän yhteisvaikutuksesta. Teräsrakenteille käytetyt yleiset analyyttiset laskentakaavat ja käyttäytymismallit eivät sovellu suoraan alumiinirakenteille, mikä johtuu alumiinin erilaisista materiaaliominaisuuksista ja käyttäytymisestä hitsauksen aikana. Tulevaisuudessa empiiristen koejärjestelyiden ja analyyttisten mallien lisäksi sovellettavan numeerisen elementtimenetelmän avulla voidaan parantaa alumiinin hitsauksessa aiheutuvien muodonmuutosten kokonaisvaltaista hallintaa.
Resumo:
Kaasukaarihitsauksessa suojakaasuna käytetään yleensä argonin ja hiilidioksidin tai argonin ja heliumin seoksia. Suojakaasu vaikuttaa useisiin hitsausominaisuuksiin, jotka puolestaan vaikuttavat hitsauksen laatuun ja tuottavuuteen. Automaattisella suojakaasun tunnistuksella ja virtausmäärän mittauksella voitaisiin tehdä hitsauksesta paitsi käyttäjän kannalta yksinkertaisempaa, myös laadukkaampaa. Työn tavoite on löytää mahdollisimman edullinen ja kuitenkin mahdollisimman tarkasti kaasuseoksia tunnistava menetelmä, jota voitaisiin hyödyntää MIG/MAG-hitsauskoneeseen sisäänrakennettuna. Selvä etu on, jos menetelmällä voidaan mitata myös kaasun virtausmäärä. Äänennopeus kaasumaisessa väliaineessa on aineen atomi- ja molekyylirakenteesta ja lämpötilasta riippuva ominaisuus, joka voidaan mitata melko edullisesti. Äänennopeuden määritys perustuu ääniaallon kulkuajan mittaamiseen tunnetun pituisella matkalla. Kaasun virtausnopeus on laskettavissa myötä- ja vastavirtaan mitattujen kulkuaikojen erotuksen avulla. Rakennettu mittauslaitteisto koostuu kahdesta ultraäänimuuntimesta, joiden halkaisija on 10 mm ja jotka toimivat sekä lähettimenä että vastaanottimena. Muuntimet ovat 140 mm:n etäisyydellä toisistaan virtauskanavassa, jossa suojakaasu virtaa yhdensuuntaisesti äänen kanssa. Virtauskanava on putki, jossa on käytetty elastisia materiaaleja, jotta ääniaaltojen eteneminen kanavan runkoa pitkin minimoituisi. Kehitetty algoritmi etsii kahden lähetetyn 40 kHz:n taajuisen kanttiaaltopulssin aiheuttaman vasteen perusteella ääniaallon saapumisajanhetken. Useiden mittausten, tulosten lajittelun ja suodatuksen jälkeen tuntemattomalle kaasulle lasketaan lämpötilakompensoitu vertailuluku. Tuntematon kaasu tunnistetaan vertailemalla lukua tunnettujen kaasuseosten mitattuihin vertailulukuihin. Laitteisto tunnistaa seokset, joissa heliumin osuus argonissa on enintään 50 %. Hiilidioksidia sisältävät argonin seokset puolestaan tunnistetaan puhtaaseen hiilidioksidiin asti jopa kahden prosenttiyksikön tarkkuudella. Kaasun tilavuusvirtausmittauksen tarkkuus on noin 1,0 l/min.
Resumo:
Kuparin ja kupariseosten hitsaus eroaa merkittävästi esimerkiksi terästen hitsauksesta. Suuri lämmönjohtavuus, lämpölaajeneminen, pehmeneminen ja kuparin taipumus liuottaa kaasuja sulaan asettavat hitsaukselle haasteita. Kuparia on perinteisesti hitsattu kaasuhitsaamalla ja kaasukaarihitsausprosesseilla, mutta uudemmat menetelmät kuten laserhitsaus, elektronisuihkuhitsaus ja FSW-hitsaus tarjoavat uudenlaisia käyttökohteita korkealla laadulla. ISO 3834-2 asettaa noudatettavat vaatimukset hitsaustoiminnalle laatuvaatimusten ollessa kattavia. Ydinvoimalaitoksella hitsauksessa tulee lisäksi noudattaa Säteilyturvakeskuksen YVL-ohjeita, joissa on määritetty lisävaatimuksia liitosten materiaalivalinnoille, pätevöittämiselle ja tarkastamiselle. Tässä työssä tutkittiin kuparimetallien hitsauksen mahdollisuutta Loviisan ydinvoimalaitoksella juottamisen sijasta siten, että kattavat laatuvaatimukset täyttyisivät. Hitsauskokeissa ja laboratoriotutkimuksissa testattiin hitsausta erilaisilla hitsausaineilla ja hitsausprosesseilla. Koetulosten pohjalta toteutettiin hitsausmenetelmä deoksidoidun kupariputken ja tinapronssilaipan TIG-hitsaukselle.
The effects of real time control of welding parameters on weld quality in plasma arc keyhole welding
Resumo:
Joints intended for welding frequently show variations in geometry and position, for which it is unfortunately not possible to apply a single set of operating parameters to ensure constant quality. The cause of this difficulty lies in a number of factors, including inaccurate joint preparation and joint fit up, tack welds, as well as thermal distortion of the workpiece. In plasma arc keyhole welding of butt joints, deviations in the gap width may cause weld defects such as an incomplete weld bead, excessive penetration and burn through. Manual adjustment of welding parameters to compensate for variations in the gap width is very difficult, and unsatisfactory weld quality is often obtained. In this study a control system for plasma arc keyhole welding has been developed and used to study the effects of the real time control of welding parameters on gap tolerance during welding of austenitic stainless steel AISI 304L. The welding tests demonstrated the beneficial effect of real time control on weld quality. Compared with welding using constant parameters, the maximum tolerable gap width with an acceptable weld quality was 47% higher when using the real time controlled parameters for a plate thickness of 5 mm. In addition, burn through occurred with significantly larger gap widths when parameters were controlled in real time. Increased gap tolerance enables joints to be prepared and fit up less accurately, saving time and preparation costs for welding. In addition to the control system, a novel technique for back face monitoring is described in this study. The test results showed that the technique could be successfully applied for penetration monitoring when welding non magnetic materials. The results also imply that it is possible to measure the dimensions of the plasma efflux or weld root, and use this information in a feedback control system and, thus, maintain the required weld quality.
Resumo:
In this research work, the results of an investigation dealing with welding of sheet metals with diverse air gap using FastROOT modified short arc welding method and short circuit MAG welding processes have been presented. Welding runs were made under different conditions and, during each run, the different process parameters were continuously monitored. It was found that maximum welding speed and less HAZ are reached under specific welding conditions with FastROOT method with the emphasis on arc stability. Welding results show that modified short arc exhibits a higher electrode melting coefficient and with virtually spatter free droplet transition. By adjusting the short circuit duration the penetration can be controlled with only a small change in electrode deposition. Furthermore, by mixing pulsed MIG welding with modified arc welding the working envelope of the process is greatly extended allowing thicker material sections to be welded with improved weld bead aesthetics. FastROOT is a modified short arc welding process using mechanized or automated welding process based on dip transfer welding, characterized by controlled material deposition during the short circuit of the wire electrode to the workpiece.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
This thesis studies quality, productivity and economy in welding manufacturing in West African states such as Ghana, Nigeria and Cameroon. The study consists of two parts: the first part, which forms the theoretical background, reviews relevant literature concerning the metal and welding industries, and measurement of welding quality, productivity and economy. The second part, which is the empirical part, aims to identify activities in the metal manufacturing industries where welding is extensively used and to determine the extent of welding quality, productivity and economy measurements in companies operating in the metal manufacturing industries. Additionally, the thesis aims to identify challenges that companies face and to assess the feasibility of creating a network to address these issues. The research methods used in the empirical part are the case study (qualitative) method and the survey (quantitative) method. However, the case study method was used to elicit information from companies in Ghana, while the survey method was used to elicit information from companies in Nigeria and Cameroon. The study considers important areas that contribute to creating awareness and understanding of the current situation of the welding industry in West Africa. These areas include the metal manufacturing industrial sector, metal products manufactured, metal production and manufacturing systems deployed, welding quality, productivity and economy measurement systems utilized, equipment and materials on the markets, general challenges facing companies in welding operations, welding technology programs and research in local universities, and SWOT analysis of the various West African states. The notable findings indicate that majority of the companies operate in the constructionindustrial sector. Also, majority of the companies are project manufacturing oriented, thus provide services to customers operating in the growing industries such as the oil and gas, mining, food and the energy industry. In addition, only few companies are certified under standards such as ISO 9001, ISO 3834, and OHSAS 18001. More so, majority of the companies employ manual welding technique, and shielded metal arc welding (SMAW) as the commonly used welding process. Finally, welder salary is about € 300 / month as of June 2013 and the average operations turnover of medium to large companies is about € 5 million / year as at 2012. Based on analysis of the results of the study, it is noted that while welding activities are growing, the availability of cheap labor, the need for company and welder qualification and certification, and the need to manufacture innovative products through developmental projects (transfer of welding expertise and technology) remain as untapped opportunities in the welding industry in the West African states. The study serves as a solid platform for further research and concludes with several recommendations for development of the West African welding industry.
Resumo:
Suojakaasun päätehtävänä on suojata hitsaustapahtumaa ympäröivän ilman vaikutukselta. Päätehtävän lisäksi suojakaasullavoidaan vaikuttaa suoraan tai välillisesti lähes kaikkiin hitsauksen asioihin, joista laatu, tehokkuus ja taloudellisuus muodostuvat. Suojakaasuja tarvitsevat hitsausmenetelmät ovat: kaasukaarihitsausprosessit (MIG/MAG-, TIG- ja plasmahitsaus), laserhitsaus sekä näiden yhdistelmät eli hybridihitsausmenetelmät sekä MIG-juotto. Hitsaussuojakaasujen peruskaasu tänä päivänä on argon, johon hitsausprosessista tai materiaalistariippuen sekoitetaan hiilidioksidia, heliumia, vetyä tai happea. Pääsääntöisesti hitsaussuojakaasut ovat kahden komponentin kaasuja, mutta 3-komponenttikaasut ovat yleistymässä. Sopivalla suojakaasuseostuksella saadaan erittäin merkittävä hyöty tuottavuuden lisääntyessä ja laadun parantuessa. Suojakaasujen oikealla toimitusmuodolla on merkittävä vaikutus kokonaiskustannuksiin. Uudet, kehittyneet sekoitinlaitteet mahdollistavat tarkat osakomponenttien sekoittamiset hitsauspaikalla. Seokset ovat jatkuvasti analysoitavissa ja jäljitettävissä. Suojakaasujen kierrätys on erityisesti kalliiden kaasujen, kuten helium ja argon, kohdalta tulevaisuuden haaste ja mahdollisuus. Suojakaasulla on suuri merkitys hitsauksen tuottavuuteen, taloudellisuuteen ja myös hitsausympäristöön ja työturvallisuuteen. Robottihitsauksen lisääntyminen asettaa vaatimuksia, joihinoikein valitulla suojakaasulla voidaan myönteisesti vaikuttaa. Tehokashitsaus on valmistusprosessin tärkeä osa, jossa oikein valituilla suojakaasuilla saavutetaan merkittävä tuottavuuden lisäys vaikuttamalla kaariominaisuuksiin, tunkeumaan, roiskeisiin, nopeuteen, hitsimetallurgiaan, lämmöntuontiin ja hitsausympäristöön. Diplomityössä tutkittiin casena Peikko Finland Oy:n suojakaasujärjestelmät, niiden tehokkuus, toimivuus ja sopivuus konepajan tuotantoon ja erityisesti robottihitsaukseen.
Resumo:
Työn teoriaosassa esitellään automatisodun hitsauksen etuja ja vaatimuksia. Teoriaosuuden edetessä keskitytään erityisesti robotisoituun MIG/MAG -hitsaukseen sekä teknisestä että taloudellisesta näkökulmasta katsottuna. Työn kokeelliseen osaan osallistui kaksi metallialan yritystä Pohjois-Karjalan alueelta. Ensimmäisessä yrityksessä kartoitettiin nykyisestä tuotannosta robottihitsattavia tuotteita. Tarkasteluun valituille tuotteille määriteltiin sopiva hitsausrobottijärjestelmä. Yrityksen tuotannolle oli ominaista asiakasohjautuva tuotanto, suhteellisen pienet sarjat ja tuotteet, joissa oli vähän hitsattavaa. Toisessa yrityksessä eräästä tuoteperheestä otettiin yksi tuote. Tuotteen avulla tutkittiin tuoteperheen hitsauksen automatisoinnin mahdollisuuksia ja sen aiheuttamia ongelmia. Suurimmat ongelmat tuotteen hitsauksen automatisoituessa ovat liitosten luoksepäästävyys, muodonmuutokset hitsauksen aikana ja erilaisten käytettävien materiaalien runsaus. Ensimmäisessä yrityksessä hitsattavien materiaalien paksuudet ovat pääosin kolme millimetriä tai sen alle. Toisessa yrityksessä hitsattavien materiaalin paksuudet ovat pääsääntöisesti yli kolme millimetriä. Työn kokeellisessa osassa vertaillaan ohuiden ja paksujen levyrakenteisten tuotteidenhitsauksen automatisoinnin yhteneväisyyksiä ja eroja teorian- ja käytännön osuuksien valossa.