8 resultados para weld toe notch
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Iowa State University (ISU) Bridge Engineering Center (BEC) performed full-scale laboratory testing of the proposed paving notch replacement system. The objective of the testing program was to verify the structural capacity of the proposed precast paving notch system and to investigate the feasibility of the proposed solution. This report describes the laboratory testing procedure and discusses its results
Resumo:
The main objective of this study was to evaluate the hydraulic performance of riprap spurs and weirs in controlling bank erosion at the Southern part of the Raccoon River upstream U.S. Highway 169 Bridge utilizing the commercially available model FESWMS and field monitoring. It was found based on a 2 year monitoring and numerical modeling that the design of structures was overall successful, including their spacing and stability. The riprap material incorporated into the structures was directly and favorably correlated to the flow transmission through the structure, or in other words, dictated the permeable nature of the structure. It was found that the permeable dikes and weirs chosen in this study created less volume of scour in the vicinity of the structure toes and thus have less risk comparatively to other impermeable structures to collapse. The fact that the structures permitted the transmission of flow through them it allowed fine sand particles to fill in the gaps of the rock interstices and thus cement and better stabilize the structures. During bank-full flows the maximum scour hole was recorded away from the structures toe and the scourhole size was directly related to the protrusion angle of the structure to the flow. It was concluded that the proposed structure inclination with respect to the main flow direction was appropriate since it provides maximum bank protection while creating the largest volume of local scour away from the structure and towards the center of the channel. Furthermore, the lowest potential for bank erosion also occurs with the present set-up design chosen by the IDOT. About 2 ft of new material was deposited in the area located between the structures for the period extending from the construction day to May 2007. Surveys obtained by sonar and the presence of vegetation indicate that new material has been added at the bank toes. Finally, the structures provided higher variability in bed topography forming resting pools, creating flow shade on the leeward side of the structure, and separation of bed substrate due to different flow conditions. Another notable environmental benefit to rock riprap weirs and dikes is the creation of resting pools, especially in year 2007 (2nd year of the project). The magnitude of these benefits to aquatic habitat has been found in the literature that is directly related to the induced scour-hole volume.
Resumo:
This book is the address delivered at Iowa City, Iowa, before the State Historical Society of Iowa on May 25, 1910 by Laenas Gifford Weld. His speech covers the history and the discovery of the territory of the Mississippi Valley and Iowa. He talks about early pioneers and explorers, the routes they took and how they navigated into this newly discovered territory.
Resumo:
The Phase I research, Iowa Department of Transportation (IDOT) Project HR-214, "Feasibility Study of Strengthening Existing Single Span Steel Beam Concrete Deck Bridges," verified that post-tensioning can be used to provide strengthening of the composite bridges under investigation. Phase II research, reported here, involved the strengthening of two full-scale prototype bridges - one a prototype of the model bridge tested during Phase I and the other larger and skewed. In addition to the field work, Phase II also involved a considerable amount of laboratory work. A literature search revealed that only minimal data existed on the angle-plus-bar shear connectors. Thus, several specimens utilizing angle-plus-bar, as well as channels, studs and high strength bolts as shear connectors were fabricated and tested. To obtain additional shear connector information, the bridge model of Phase I was sawed into four composite concrete slab and steel beam specimens. Two of the resulting specimens were tested with the original shear connection, while the other two specimens had additional shear connectors added before testing. Although orthotropic plate theory was shown in Phase I to predict vertical load distribution in bridge decks and to predict approximate distribution of post-tensioning for right-angle bridges, it was questioned whether the theory could also be used on skewed bridges. Thus, a small plexiglas model was constructed and used in vertical load distribution tests and post-tensioning force distribution tests for verification of the theory. Conclusions of this research are as follows: (1) The capacity of existing shear connectors must be checked as part of a bridge strengthening program. Determination of the concrete deck strength in advance of bridge strengthening is also recommended. (2) The ultimate capacity of angle-plus-bar shear connectors can be computed on the basis of a modified AASHTO channel connector formula and an angle-to-beam weld capacity check. (3) Existing shear connector capacity can be augmented by means of double-nut high strength bolt connectors. (4) Post-tensioning did not significantly affect truck load distribution for right angle or skewed bridges. (5) Approximate post-tensioning and truck load distribution for actual bridges can be predicted by orthotropic plate theory for vertical load; however, the agreement between actual distribution and theoretical distribution is not as close as that measured for the laboratory model in Phase I. (6) The right angle bridge exhibited considerable end restraint at what would be assumed to be simple support. The construction details at bridge abutments seem to be the reason for the restraint. (7) The skewed bridge exhibited more end restraint than the right angle bridge. Both skew effects and construction details at the abutments accounted for the restraint. (8) End restraint in the right angle and skewed bridges reduced tension strains in the steel bridge beams due to truck loading, but also reduced the compression strains caused by post-tensioning.
Resumo:
The city of Ankeny is submitting this WIRB application for development of green urban stormwater practices on city and private property in the Fourmile Creek watershed. The stormwater project proposed includes stream restoration of the SE Tributary to Fourmile Creek (Tributary B), including weirs, bank shaping, toe protection, trees, and native plantings. The project also includes the creation of a native buffer along the stream channel in the city’s Summerbrook Park, installing four native planting beds, installing a pervious surface trail, installing a series of rain gardens/biorentention cells, and installing educational signage. Polk County Soil and Water Conservation District has committed $17,000 towards the native buffer and rain garden/biorentention cell. The city of Ankeny was also awarded a $100,000 I-JOBS grant from IDNR to complete the stormwater retrofit practices. The largest component of this project is public education. Our vision for this project is to take the entire 281 acre watershed and address it as a whole. We want to make a collaborative watershed that not only addresses the water entering the stream channel through adjacent properties, but takes each individual parcel within the watershed and strives to reduce contributions to the stormwater system. The stormwater issues of concern for Tributary B include stormwater volume, sediment, and nutrients. The stream restoration, best management practices (BMP) at Summerbrook Park, and BMPs on private property should help decrease the volume of stormwater and reduce the amount of sediment and nutrients that enter Tributary B and ultimately Fourmile Creek.
Resumo:
The DMACC Lake Watershed Improvement project will focus on water quality and quantity as well as channel and lake restoration. Roadway, parking lot, and roof drainage from the west and northwest portions of the campus add significant amounts of pollutants and silt to the lake. Severe channel erosion exists along the northern creek channel with exposed cut banks ranging from 2-10 feet in height devoid of vegetation. Heavy lake sedimentation and algae blooms are a result of accumulated sediment being conveyed to the lake. Most sections of the north channel have grades of between 0.5% and 1%. This channel receives large scouring flow velocities. There are no natural riffle or pool systems. There are five areas where these riffle and pool systems may need to be created in order to slow overall channel velocities. This will create a series of rock riffles and a still pool that will mimic the conditions that natural channels tend to create, protecting the channel from undercutting. Multiple practices will need to be implemented to address the pollutant, silt, and channel erosion. Improvements will be specifically tailored to address problems observed within the north channel, on-site drainage from the west and northwest, as well as off-site drainage to the north of the campus and east of Ankeny Blvd (Hwy 69). The result will be improved quality and quantity of site drainage and a channel with a more natural appearance and reduced scour velocities. Sections of the north channel will require grading to establish slopes that can support deep rooted vegetation and to improve maintenance access. Areas with eroded banks will require slope pull back and may also require toe armor protection to stabilize. A constructed wetland will collect and treat runoff from the west on site parking lot, before being discharged into the lake. This project will create educational opportunities to both students and the general public as well as interested parties outside of the local area for how an existing system can be retro fitted for improved watershed quality.
Resumo:
The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.
Resumo:
In 1957, the Iowa State Highway Commission, with financial assistance from the aluminum industry, constructed a 220-ft (67-m) long, four-span continuous, aluminum girder bridge to carry traffic on Clive Road (86th Street) over Interstate 80 near Des Moines, Iowa. The bridge had four, welded I-shape girders that were fabricated in pairs with welded diaphragms between an exterior and an interior girder. The interior diaphragms between the girder pairs were bolted to girder brackets. A composite, reinforced concrete deck served as the roadway surface. The bridge, which had performed successfully for about 35 years of service, was removed in the fall of 1993 to make way for an interchange at the same location. Prior to the bridge demolition, load tests were conducted to monitor girder and diaphragm bending strains and deflections in the northern end span. Fatigue testing of the aluminum girders that were removed from the end spans were conducted by applying constant-amplitude, cyclic loads. These tests established the fatigue strength of an existing, welded, flange-splice detail and added, welded, flange-cover plates and horizontal web plate attachment details. This part, Part 2, of the final report focuses on the fatigue tests of the aluminum girder sections that were removed from the bridge and on the analysis of the experimental data to establish the fatigue strength of full-size specimens. Seventeen fatigue fractures that were classified as Category E weld details developed in the seven girder test specimens. Linear regression analyses of the fatigue test results established both nominal and experimental stress-range versus load cycle relationships (SN curves) for the fatigue strength of fillet-welded connections. The nominal strength SN curve obtained by this research essentially matched the SN curve for Category E aluminum weldments given in the AASHTO LRFD specifications. All of the Category E fatigue fractures that developed in the girder test specimens satisfied the allowable SN relationship specified by the fatigue provisions of the Aluminum Association. The lower-bound strength line that was set at two standard deviations below the least squares regression line through the fatigue fracture data points related well with the Aluminum Association SN curve. The results from the experimental tests of this research have provided additional information regarding behavioral characteristics of full-size, aluminum members and have confirmed that aluminum has the strength properties needed for highway bridge girders.