8 resultados para uncontrolled vocabulary

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa Counties have been experiencing significant tort claim liability due to the signing of local roads. One such problem is relative to the real or alleged need for signing at uncontrolled intersections of local roads. It has been assumed that the standard CROSS ROAD sign, which calls for a yellow diamond with a black cross, was sufficient to provide the necessary warning that a driver may be approaching an intersection which requires special precautionary driving attention. However, it is possible that this sign on a through highway might conflict with the legal status of the local county road. In light of this situation, it seemed worthwhile to know the extent to which uncontrolled local road intersections were perceived as a potential liability problem; the degree to which the standard CROSS ROAD sign communicated to the driver the message a county engineer wanted at these local road intersections; and whether there were any better signing alternatives available to communicate this hazard to the driver in this situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By October 1, 2014, the county engineer of each county shall provide a report to the department of transportation identifying all locations in the county where two different roads or highways having speed limits of 55 miles per hour or greater intersect but are not controlled by an official traffic-control signal or by official traffic-control devices that direct traffic approaching from every direction to stop or yield before entering the intersection. On or before December 31, 2014, the department shall file a report with the legislative services agency detailing the number of locations of the intersections identified in the county engineers’ reports.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary reason for using steam in the curing of concrete is to produce a high early strength. This high early strength is very desirable to the manufacturers of precast and prestressed concrete units, which often require expensive forms or stress beds. They want to remove the forms and move the units to storage yards as soon as possible. The minimum time between casting and moving the units is usually governed by the strength of the concrete. Steam curing accelerates the gain in strength at early ages, but the uncontrolled use of steam may seriously affect the growth in strength at later ages. The research described in this report was prompted by the need to establish realistic controls and specifications for the steam curing of pretensioned, prestressed concrete bridge beams and concrete culvert pipe manufactured in central plants. The complete project encompasses a series of laboratory and field investigations conducted over a period of approximately three years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early stiffening of cement has been noted as contributing to workability problems with concrete placed in the field. Early stiffening, normally attributed to cements whose gypsum is reduced to hemi⋅hydrate or anhydrate because of high finish mill temperatures, is referred to as false setting. Stiffening attributed to uncontrolled reaction of C3A is referred to as flash set. False setting may be overcame by extended mix period, while flash setting is usually more serious and workability is usually diminished with extended mixing. ASTM C 359 has been used to detect early stiffening with mixed results. The mini slump cone test was developed by Construction Technology Laboratories (CTL), Inc., as an alternative method of determining early stiffening. This research examined the mini slump cone test procedure to determine the repeatability of the results obtained from two different testing procedures, effect of w/c ratio, lifting rate of the cone, and accuracy of the test using a standard sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous strategies have been experimented with nationwide in an attempt to reduce the overall number of pedestrian-vehicle crashes, especially in instances where improper crossing or failure to yield was the proximate cause of the crash. Some of these measures include overhead signs, flashing warning beacons, advanced crossing signs, more visible pavement markings, in-street “Yield to Pedestrian” signs, and more recently, in-pavement flashing lights. Pedestrian safety has been a key issue for the City of Cedar Rapids, Iowa, in particular at non-controlled intersections and mid-block crossings. In 2002, the city council gave preliminary approval to implement a pedestrian-actuated overhead flasher system in conjunction with an in-pavement flasher system at the intersection of 1st Avenue NE and 4th Street NE in the downtown central business district. This location is uncontrolled and has several elements that can create conflicts between pedestrians, vehicles, and trains that service local industry. This report summarizes the results from a small-scale study completed by CTRE to evaluate the effectiveness of the in-pavement flasher system installed in downtown Cedar Rapids. The installation of in-pavement flashing warning lights at the pedestrian crosswalk at this site has had a net positive effect on the safety characteristics of the location. The results of this study show a marked improvement in motorist compliance with the state law requiring that motorists yield to pedestrians in the crosswalk. The pedestrian and motorist surveys show that both groups felt the in-pavement flashing lights have increased motorist awareness, especially at night. The data indicate the in-pavement flashing warning lights improved the motorists' response to pedestrians in the area, and that the system could be operational throughout summer and winter conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The City of Marquette lies in the 65,000 acre Mississippi River watershed, and is surrounded by steep bluffs. Though scenic, controlling water runoff during storm events presents significant challenges. Flash-flooding from the local watershed has plagued the city for decades. The people of Marquette have committed to preserve the water quality of key natural resources in the area including the Bloody Run Creek and associated wetlands by undertaking projects to control the spread of debris and sediment caused by excess runoff during area storm events. Following a July 2007 storm (over 8” of rain in 24 hours) which caused unprecedented flood damage, the City retained an engineering firm to study the area and provide recommendations to eliminate or greatly reduce uncontrolled runoff into the Bloody Run Creek wetland, infrastructure damage and personal property loss. Marquette has received Iowa Great Places designation, and has demonstrated its commitment to wetland preservation with the construction of Phase I of this water quality project. The Bench Area Storm Water Management Plan prepared by the City in 2008 made a number of recommendations to mitigate flash flooding by improving storm water conveyance paths, detention, and infrastructure within the Bench area. Due to steep slopes and rocky geography, infiltration based systems, though desirable, would not be an option over surface based systems. Runoff from the 240 acre watershed comes primarily from large, steep drainage areas to the south and west, flowing to the Bench area down three hillside routes; designated as South East, South Central and South West. Completion of Phase I, which included an increased storage capacity of the upper pond, addressed the South East and South Central areas. The increased upper pond capacity will now allow Phase II to proceed. Phase II will address runoff from the South West drainage area; which engineers have estimated to produce as much water volume as the South Central and South East areas combined. Total costs for Phase I are $1.45 million, of which Marquette has invested $775,000, and IJOBS funding contributed $677,000. Phase II costs are estimated at $617,000. WIRB funding support of $200,000 would expedite project completion, lessen the long term debt impact to the community and aid in the preservation of the Bloody Run Creek and adjoining wetlands more quickly than Marquette could accomplish on its own.