3 resultados para traditional design

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Iowa, there are currently no uniform design standards for rural and suburban subdivision development roadways. Without uniform design standards, many counties are unable to provide adequate guidance for public facilities, particularly roadways, to be constructed as part of a rural subdivision development. If a developer is not required to install appropriate public improvements or does not do so properly, significant liability and maintenance expenses can be expected, along with the potential for major project costs to correct the situation. Not having uniform design standards for rural and suburban subdivision development improvements in Iowa creates situations where there is potential for inconsistency and confusion. Differences in the way development standards are applied also create incentives or disincentives for developers to initiate subdivision platting in a particular county. With the wide range of standards or lack of standards for local roads in development areas, it is critical that some level of uniformity is created to address equity in development across jurisdictional lines. The standards must be effective in addressing the problem, but they must not be so excessive as to curtail development activities within a local jurisdiction. In order to address the concerns, cities and counties have to work together to identify where growth is going to be focused. Within that long-term growth area, the roadways should be constructed to urban standards to provide an easier transition to traditional urban facilities as the area is developed. Developments outside of the designated growth area should utilize a rural cross section since it is less likely to have concentrated urban development. The developers should be required to develop roadways that are designed for a minimum life of 40 years, and the county should accept dedication of the roadway and be responsible for its maintenance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More and more, integral abutment bridges are being used in place of the more traditional bridge designs with expansion releases. In this study, states which use integral abutment bridges were surveyed to determine their current practice in the design of these structures. To study piles in integral abutment bridges, a finite element program for the soil-pile system was developed (1) with materially and geometrically nonlinear, two and three dimensional beam elements and (2) with a nonlinear, Winkler soil model with vertical, horizontal, and pile tip springs. The model was verified by comparison to several analytical and experimental examples. A simplified design model for analyzing piles in integral abutment bridges is also presented. This model grew from previous analytical models and observations of pile behavior. The design model correctly describes the essential behavioral characteristics of the pile and conservatively predicts the vertical load-carrying capacity. Analytical examples are presented to illustrate the effects of lateral displacements on the ultimate load capacity of a pile. These examples include friction and end-bearing piles; steel, concrete, and timber piles; and bending about the weak, strong, and 45° axes for H piles. The effects of cyclic loading are shown for skewed and nonskewed bridges. The results show that the capacity of friction piles is not significantly affected by lateral displacements, but the capacity of end-bearing piles is reduced. Further results show that the longitudinal expansion of the bridge can introduce a vertical preload on the pile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study had three objectives: (1) to develop a comprehensive truck simulation that executes rapidly, has a modular program construction to allow variation of vehicle characteristics, and is able to realistically predict vehicle motion and the tire-road surface interaction forces; (2) to develop a model of doweled portland cement concrete pavement that can be used to determine slab deflection and stress at predetermined nodes, and that allows for the variation of traditional thickness design factors; and (3) to implement these two models on a work station with suitable menu driven modules so that both existing and proposed pavements can be evaluated with respect to design life, given specific characteristics of the heavy vehicles that will be using the facility. This report summarizes the work that has been performed during the first year of the study. Briefly, the following has been accomplished: A two dimensional model of a typical 3-S2 tractor-trailer combination was created. A finite element structural analysis program, ANSYS, was used to model the pavement. Computer runs have been performed varying the parameters defining both vehicle and road elements. The resulting time specific displacements for each node are plotted, and the displacement basin is generated for defined vehicles. Relative damage to the pavement can then be estimated. A damage function resulting from load replications must be assumed that will be reflected by further pavement deterioration. Comparison with actual damage on Interstate 80 will eventually allow verification of these procedures.