8 resultados para top loading

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load transfer across transverse joints has always been a factor contributing to the useful life of concrete pavements. For many years, round steel dowels have been the conventional load transfer mechanism. Many problems have been associated with the round steel dowels. The most detrimental effect of the steel dowel is corrosion. Repeated loading over time also damages joints. When a dowel is repeatedly loaded over a long period of time, the high bearing stresses found at the top and bottom edge of a bar erode the surrounding concrete. This oblonging creates multiple problems in the joint. Over the past decade, Iowa State University has performed extensive research on new dowel shapes and materials to mitigate the effects of oblonging and corrosion. This report evaluates the bearing stress performance of six different dowel bar types subjected to two different shear load laboratory test methods. The first load test is the AASHTO T253 method. The second procedure is an experimental cantilevered dowel test. The major objective was to investigate and improve the current AASHTO T253 test method for determining the modulus of dowel support, k0. The modified AASHTO test procedure was examined alongside an experimental cantilever dowel test. The modified AASHTO specimens were also subjected to a small-scale fatigue test in order to simulate long-term dowel behavior with respect to concrete joint damage. Loss on ignition tests were also performed on the GFRP dowel specimens to determine the resin content percentage. The study concluded that all of the tested dowel bar shapes and materials were adequate with respect to performance under shear loading. The modified AASHTO method yielded more desirable results than the ones obtained from the cantilever test. The investigators determined that the experimental cantilever test was not a satisfactory test method to replace or verify the AASHTO T253 method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of the Iowa Department of Transportation (Iowa DOT) continuous, steel, welded plate girder bridges have developed web cracking in the negative moment regions at the diaphragm connection plates. The cracks are due to out-of-plane bending of the web near the top flange of the girder. The out-of-plane bending occurs in the "web-gap", which is the portion of the girder web between (1) the top of the fillet welds attaching the diaphragm connection plate to the web and (2) the fillet welds attaching the flange to the web. A literature search indicated that four retrofit techniques have been suggested by other researchers to prevent or control this type of cracking. To eliminate the problem in new bridges, AASHTO specifications require a positive attachment between the connection plate and the top (tension) flange. Applying this requirement to existing bridges is expensive and difficult. The Iowa DOT has relied primarily on the hole-drilling technique to prevent crack extension once cracking has occurred; however, the literature indicates that hole-drilling alone may not be entirely effective in preventing crack extension. The objective of this research was to investigate experimentally a method proposed by the Iowa DOT to prevent cracking at the diaphragm/plate girder connection in steel bridges with X-type or K-type diaphragms. The method consists of loosening the bolts at some connections between the diaphragm diagonals and the connection plates. The investigation included selecting and testing five bridges: three with X-type diaphragms and two with K-type diaphragms. During 1996 and 1997, these bridges were instrumented using strain gages and displacement transducers to obtain the response at various locations before and after implementing the method. Bridges were subjected to loaded test trucks traveling in different lanes with speeds varying from crawl speed to 65 mph (104 km/h) to determine the effectiveness of the proposed method. The results of the study show that the effect of out-of-plane loading was confined to widths of approximately 4 in. (100 mm) on either side of the connection plates. Further, they demonstrate that the stresses in gaps with drilled holes were higher than those in gaps without cracks, implying that the drilling hole technique is not sufficient to prevent crack extension. The behavior of the web gaps in X-type diaphragm bridges was greatly enhanced by the proposed method as the stress range and out-of-plane distortion were reduced by at least 42% at the exterior girders. For bridges with K-type diaphragms, a similar trend was obtained. However, the stress range increased in one of the web gaps after implementing the proposed method. Other design aspects (wind, stability of compression flange, and lateral distribution of loads) must be considered when deciding whether to adopt the proposed method. Considering the results of this investigation, the proposed method can be implemented for X-type diaphragm bridges. Further research is recommended for K-type diaphragm bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The load ratings for these Standard bridges were calculated in compliance with the 1978 AASHTO Manual for Maintenance Inspection of Bridges, using the appropriate allowable stresses for the materials specified by the Standard plans. Distribution of loads is in compliance with the Manual unless otherwise noted. Except for truss spans, all bridges with roadway widths of 18 ft. or less were rated for one lane of traffic. All 18 ft. roadway truss bridges were rated for both one and two lanes of traffic. All bridges with roadway widths exceeding 18 ft. were rated for two lanes of traffic. If the posting rating for two lane bridges was less than legal, then the bridges were rated for traffic restricted to one lane, or to one lane centered in the roadway, as noted on the summary sheet. The ratings are applicable to bridges built in accordance with the standard plans and which exhibit no significant deterioration or damage to the structural members, and which have no added wearing surface material in excess of that noted on the summary sheets and used in the calculations. The inventory and operating ratings were based upon the standard AASHTO HS20-44 loading. The legal load ratings were based upon the three typical Iowa legal vehicles shown on page 5. The legal load ratings were based upon the maximum allowable Operating Rating stresses specified in the Manual. Refer to notations on the summary sheets for additional qualifications on the load ratings for specific standard bridge series. Load ratings for standard bridges with wood floors must be based upon existing conditions of attachment of the wood flooring to the top flanges of longitudinal steel stringers. The ratings must be reevaluated if the existing lateral support conditions are not in accordance with conditions used for the rating and noted on the summary sheets. Details of most of the standard bridges are included in the three books of "Iowa State Highway Commission, Bridge Standards," issued in June, 1972. Copies of plans for those standard bridges that were rated, and that are not included in the original books of standard plans, are being furnished under separate cover with these rating summaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of deicing salts in this part of the country is a necessity to remove ice from our bridges. The use of these salts has always been a problem since the chloride-ions penetrate the concrete and reach the steel and cause corrosion which eventually cause deterioration of both the steel and concrete. One method used to try to prevent this from happening was to apply a waterproof membrane to the concrete after it was placed. This method did help, but was not cost effective as the longevity of the membrane system was of relatively short duration. For this reason, this research project was initiated. After the original deck was placed a second layer of concrete about 1 1/2" thick was placed on top. Biennial evaluation of the decks included testing for delaminations and steel corrosion. Cores were also obtained for a chloride analysis. Testing and observations showed the two-layer bridge deck to be effective in preventing corrosion. Since the time this project was initiated, epoxy steel has been introduced and is a cost effective way to protect the steel from corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is formatted to independently present four individual investigations related to similar web gap fatigue problems. Multiple steel girder bridges commonly exhibit fatigue cracking due to out-of-plane displacement of the web near the diaphragm connections. This fatigue-prone web gap area is typically located in negative moment regions of the girders where the diaphragm stiffener is not attached to the top flange. In the past, the Iowa Department of Transportation has attempted to stop fatigue crack propagation in these steel girder bridges by drilling holes at the crack tips. Other nondestructive retrofits have been tried; in a particular case on a two-girder bridge with floor beams, angles were bolted between the stiffener and top flange. The bolted angle retrofit has failed in the past and may not be a viable solution for diaphragm bridges. The drilled hole retrofit is often only a temporary solution, so a more permanent and effective retrofit is required. A new field retrofit has been developed that involves loosening the bolts in the connection between the diaphragm and the girders. Research on the retrofit has been initiated; however, no long-term studies of the effects of bolt loosening have been performed. The intent of this research is to study the short-term effects of the bolt loosening retrofit on I-beam and channel diaphragm bridges. The research also addressed the development of a continuous remote monitoring system to investigate the bolt loosening retrofit on an X-type diaphragm bridge over a number of months, ensuring that the measured strain and displacement reductions are not affected by time and continuous traffic loading on the bridge. The testing for the first three investigations is based on instrumentation of web gaps in a negative moment region on Iowa Department of Transportation bridges with I-beam, channel, and X-type diaphragms. One bridge of each type was instrumented with strain gages and deflection transducers. Field tests, using loaded trucks of known weight and configuration, were conducted on the bridges with the bolts in the tight condition and after implementing the bolt loosening retrofit to measure the effects of loosening the diaphragm bolts. Long-term data were also collected on the X-diaphragm bridge by a data acquisition system that collected the data continuously under ambient truck loading. The collected data were retrievable by an off-site modem connection to the remote data acquisition system. The data collection features and ruggedness of this system for remote bridge monitoring make it viable as a pilot system for future monitoring projects in Iowa. Results indicate that loosening the diaphragm bolts reduces strain and out-of-plane displacement in the web gap, and that the reduction is not affected over time by traffic or environmental loading on the bridge. Reducing the strain in the web gap allows the bridge to support more cycles of loading before experiencing fatigue, thus increase the service life of the bridge. Two-girder floor beam bridges may also exhibit fatigue cracking in girder webs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this investigation was to study the flexural fatigue strength of two prestressed steel I-beams which had previously been fabricated in connection with a jointly sponsored project under the auspices of the Iowa State Highway Commission. The beams were prestressed by deflecting them under the action of a concentrated load at the center of a simple span, then welding unstressed high strength steel plates to the top and bottom flanges to retain a predetermined amount of prestress. The beams were rolled sections of A36 steel and the plates were USS "T-1" steel. Each of the two test specimens were subjected to an identical repeated loading until a fatigue failure occurred. The loading was designed to produce stresses equivalent to those which would have occurred in a simulated bridge and amounted to 84 percent of a standard H-15 live load including impact. One of the beams sustained 2,469,100 repetitions of load to failure and the other sustained 2,756,100 cycles. Following the fatigue tests, an experimental study was made to determine the state of stress that had been retained in the prestressed steel beams. This information, upon which the calculated stresses of the test could be superimposed, provided a method of correlating the fatigue strength of the beams with the fatigue information available on the two steels involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1990, early distress had shown up on US 20 in Hamilton/Webster counties, three years after paving. Since that time, over a dozen more projects, constructed between 1984 and 1994, have been found to exhibit similar early distress. Several changes to the concrete and Portland cement specifications occurred in 1994 and 1996. This study was undertaken to investigate in place concrete pavements before and after specification changes were implemented. The objective of this research is to evaluate the impact of Portland cement and concrete specification changes made in 1994 and 1996 on PCC durability. Cores were obtained in 1998 and 2003 from projects constructed in 1992, before specification changes, and 1997 after specification changes. The following is a brief summary of the conclusions: 1. The pavements in the study constructed under the new specifications are performing much better after 5 years of service than the pavements constructed under the old specifications. 2. According to ISU, micro-cracking is evident in all concrete that has been in service, due to thermal stresses and loading stresses. Also, the low vacuum SEM will desiccate the concrete enough to cause micro-cracking. The SEM should not be used as a tool to indicate micro-cracking. 3. Use of Type II cement (C3A <8%) and a 3.0% SO3 limit does not completely eliminate ettringite infilling in air voids, as indicated in the bottom of the 1997 cores. 4. In areas of high moisture (bottom of the core), infilling is present in most of the 1997 cores. 5. Low air content and high spacing factor in the top of 1992 cores apparently causes F/T cycling cracking and then increased moisture paths from cracking causes infilling. 6. Use of ground granulated blast furnace slag (GGBFS) and fly ash reduces ettringite infilling either by diluting the aluminate (C3A) or lowering permeability, which slows ingress of moisture. 7. The specification changes that made the biggest impact on pavement durability are the limits on vibration and increase in air content in September 1994. 8. Investigations of cores from pavements placed in 2002 and 2003 indicate improved air contents and spacing factors. In-place air content and spacing factors should be monitored to determine if appropriate air void parameters are being met.