4 resultados para tibial plato leveling osteotomy
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
For over three decades, the number of Iowa inmates with life sentences has shown a steady increase. As the chart below shows, that number has risen from 111 in 1980 to 680 in 2012 (data for 1987 is unavailable due to transitioning to new data systems)
Resumo:
Before the Iowa Department of Transportation (DOT) was established by legislation in July 1974, there were several state agencies that handled the tasks that are now the responsibility of an integrated, multimodal Iowa DOT. Among those agencies was the Iowa State Highway Commission (IHC). You are invited to read a brief history of the Iowa DOT here:http://www.iowadot.gov/about/organizationalhistory.htm The IHC operated as an independent state agency between 1913 and 1974. In 1968, the IHC created and released This is YOUR Highway Commission, a 24 ½- minute film that showcased the responsibilities and functions of the IHC. The narrator describes the activities of various offices and employees, and explains how those activities benefited Iowa’s citizens and motorists. The film journeys through all areas of IHC responsibility to Iowa’s roadways, including administration, planning, design, bidding, right of way, materials, construction, maintenance and facilities. As part of the Iowa DOT’s effort to preserve and archive its historical resources, the original 16mm film was professionally cleaned, restored and digitized so that it could be made available via this website. The Iowa DOT is currently researching and compiling information necessary to prepare detailed biographies of the IHC employees identified in the film. Included in each biography will be still frames taken from the film, as well as other images from the Iowa DOT’s archives. This more comprehensive description of the film will be available in the future. In the meantime, below is a list of the IHC employees who have been identified. The list is arranged in the order in which each employee first appears in the film. There remain numerous unidentified employees in the film, and the Iowa DOT would greatly appreciate any assistance in identifying them. If you recognize an IHC employee in the film who is not on this list, please contactbeth.collins@dot.iowa.gov with any information you feel would be useful. Identified employees: Joseph Coupal, Jr.—Director of Highways Harry Bradley—Commissioner Derby Thompson—Commissioner John Hansen—Commissioner Koert Voorhees—Commissioner Harold Shiel—Engineer Howard Gunnerson—Chief engineer Martha Groth—Commission Secretary Robert Barry—Commissioner Nancy Groomes—Director’s Secretary Russell Moreland—Planning C.B. Anderson—Planning Gus Anderson—Engineer Carl Schach—Deputy chief engineer Raymond Kassel—Hearings engineer (later director of Transportation) Bob Given—Deputy chief engineer Don McLean—Director of Engineering Howard Thielen—Surveying (using rod) John Huss—Surveying (using leveling transit) John “Harley” McCoy—Surveying (taking notes) Jim Smith—Right of Way Keith Davis—Contracts Sherrill P. Freed—Sign Shop Olav Smedal—Director of Public Information
Resumo:
This research, initiated in October 1992, was located at the intersection of Blairs Ferry Road and Lindale Drive in the City of Marion. The wall is located on the southeast corner of the intersection. Reinforced retaining wall construction started with a five inch base of roadstone with one inch of sand for leveling purposes. One and one-half to two feet of one inch clean stone was placed behind the blocks. A four inch perforated plastic pipe was placed approximately nine inches from the bottom of the one inch clean stone. The Tenswal, tensar geogrid was placed at every third layer. Openings in the Tenswal are hooked over plastic dowels in the blocks. The tenswal reaches from the face of the wall back 5' to 8'. The cost for constructing this wall was $124,400. The wall has performed well for the past five years. The wall improves the aesthetics of a high traffic volume intersection of an urban area. Many positive comments have been received by the city regarding its appearance. The City of Marion has been pleased with the wall and has used this type of wall on subsequent projects.
Resumo:
As a result of the collapse of a 140 foot high-mast lighting tower in Sioux City, Iowa in November of 2003, a thorough investigation into the behavior and design of these tall, yet relatively flexible structures was undertaken. Extensive work regarding the root cause of this failure was carried out by Robert Dexter of The University of Minnesota. Furthermore, a statewide inspection of all the high-mast towers in Iowa revealed fatigue cracks and loose anchor bolts on other existing structures. The current study was proposed to examine the static and dynamic behavior of a variety of towers in the State of Iowa utilizing field testing, specifically long-term monitoring and load testing. This report presents the results and conclusions from this project. The field work for this project was divided into two phases. Phase 1 of the project was conducted in October 2004 and focused on the dynamic properties of ten different towers in Clear Lake, Ames, and Des Moines, Iowa. Of those ten, two were also instrumented to obtain stress distributions at various details and were included in a 12 month long-term monitoring study. Phase 2 of this investigation was conducted in May of 2005, in Sioux City, Iowa, and focused on determining the static and dynamic behavior of a tower similar to the one that collapsed in November 2003. Identical tests were performed on a similar tower which was retrofitted with a more substantial replacement bottom section in order to assess the effect of the retrofit. A third tower with different details was dynamically load tested to determine its dynamic characteristics, similar to the Phase 1 testing. Based on the dynamic load tests, the modal frequencies of the towers fall within the same range. Also, the damping ratios are significantly lower in the higher modes than the values suggested in the AASHTO and CAN/CSA specifications. The comparatively higher damping ratios in the first mode may be due to aerodynamic damping. These low damping ratios in combination with poor fatigue details contribute to the accumulation of a large number of damage-causing cycles. As predicted, the stresses in the original Sioux City tower are much greater than the stresses in the retrofitted towers at Sioux City. Additionally, it was found that poor installation practices which often lead to loose anchor bolts and out-of-level leveling nuts can cause high localized stresses in the towers, which can accelerate fatigue damage.