2 resultados para teat count in pigs

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report presents the results of surveys to determine studded tire usage in Iowa. Also reported are the results of measurements of transverse pavement profiles at selected locations where the pavement is subjected to a high volume of traffic. The surveys were made in January of each of the years 1969 through 1978 and in each of 27 areas into which the state was divided. Estimates of studded tire usage were also made at various locations on Interstate highways in Iowa. The lowest percentage of studded tires was observed in the initial count during the winter of 1968-69. Two years later the percentage had increased to the maximum (22.6%) and then began a gradual decline. The latest count in January of 1978 indicated 8.5% of the cars had studded tires. The decline in the use of studded tires is attributed to the efforts of the Iowa DOT and others to obtain a ban on studded tires and a continual increase in the use of radial tires with claims of improved traction. The wear measurements were recorded by camera. It was found that studded tires have worn ruts in Iowa pavements as deep as 5/16 inch. The ruts lead to water on the pavement and this causes hydroplaning, as well as splash and spray. The conclusion of the study was that studded tires should be banned in Iowa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highway departments of the states which use integral abutments in bridge design were contacted in order to study the extent of integral abutment use in skewed bridges and to survey the different guidelines used for analysis and design of integral abutments in skewed bridges. The variation in design assumptions and pile orientations among the various states in their approach to the use of integral abutments on skewed bridges is discussed. The problems associated with the treatment of the approach slab, backfill, and pile cap, and the reason for using different pile orientations are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure previously developed by the authors was modified and used to study the influence of different factors on behavior of piles in integral abutment bridges. An idealized integral abutment was introduced by assuming that the pile is rigidly cast into the pile cap and that the approach slab offers no resistance to lateral thermal expansion. Passive soil and shear resistance of the cap are neglected in design. A 40-foot H pile (HP 10 X 42) in six typical Iowa soils was analyzed for fully restrained pile head and pinned pile head. According to numerical results, the maximum safe length for fully restrained pile head is one-half the maximum safe length for pinned pile head. If the pile head is partially restrained, the maximum safe length will lie between the two limits. The numerical results from an investigation of the effect of predrilled oversized holes indicate that if the length of the predrilled oversized hole is at least 4 feet below the ground, the vertical load-carrying capacity of the H pile is only reduced by 10 percent for 4 inches of lateral displacement in very stiff clay. With no predrilled oversized hole, the pile failed before the 4-inch lateral displacement was reached. Thus, the maximum safe lengths for integral abutment bridges may be increased by predrilling. Four different typical Iowa layered soils were selected and used in this investigation. In certain situations, compacted soil (> 50 blow count in standard penetration tests) is used as fill on top of natural soil. The numerical results showed that the critical conditions will depend on the length of the compacted soil. If the length of the compacted soil exceeds 4 feet, the failure mechanism for the pile is similar to one in a layer of very stiff clay. That is, the vertical load-carrying capacity of the H pile will be greatly reduced as the specified lateral displacement increases.