32 resultados para surface texture
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
An experimental modification of the transverse groove surface texture of a section of an urban interstate highway was performed by the Iowa Department of Transportation. Transverse groove texturing i s a design feature required by the Federal Highway Administration t o reduce skidding under wet pavement conditions. Adjacent residents claimed the texturing was the cause of especially annoying tonal characteristics within the traffic noise. A research proposal to modify the existing texture pattern by surface grinding and to study the noise and friction effects was approved for funding by the Iowa Highway Research Board. Results i n the form of a comparison between traffic noise before modification and traffic noise immediately after and 15 months after modification indicate that the change in surface texture has lowered overall traffic noise levels by reducing a high frequency component of the traffic noise spectrum. Fraffic testing data show reduced capacity of the roadway to inhibit wet pavement skidding as a result of the surface modification.
Resumo:
One of the most important issues in portland cement concrete pavement research today is surface characteristics. The issue is one of balancing surface texture construction with the need for durability, skid resistance, and noise reduction. The National Concrete Pavement Technology Center at Iowa State University, in conjunction with the Federal Highway Administration, American Concrete Pavement Association, International Grinding and Grooving Association, Iowa Highway Research Board, and other states, have entered into a three-part National Surface Characteristics Program to resolve the balancing problem. As a portion of Part 2, this report documents the construction of 18 separate pavement surfaces for use in the first level of testing for the national project. It identifies the testing to be done and the limitations observed in the construction process. The results of the actual tests will be included in the subsequent national study reports.
Resumo:
Experience has shown that milling machines with carbide tipped teeth have the capability of profiling most asphalt concrete (ac) and portland cement concrete (pcc) pavements. Most standard milling operations today leave a very coarse, generally objectionable surface texture. This research utilized a Cedarapids Wirtgen 1900C mill modified by adding additional teeth. There were 411 teeth at a 5 millimeter transverse spacing (standard spacing is 15 mm) on a 6 ft. 4 in. long drum. The mill was used to profile and texture the surface of one ac and two pcc pavements. One year after the milling operation there is still some noticeable change in tire noise but the general appearance is good. The milling operation with the additional teeth provides an acceptable surface texture with improved Friction Numbers when compared to a nonmilled surface.
Resumo:
Methods of improving highway safety are of major concern to everyone who is involved in the planning, development and construction of improvements of our vast highway network. Other major concerns are the conservation of our rapidly disappearing sources of energy and quality building materials. This research is devoted to further exploration of a process which will: 1. help preserve higher quality aggregates; and, 2. improve the frictional characteristics and surface texture of asphalt pavement surfaces. Sprinkle treatment of asphalt concrete pavement surfaces with a non-polishing aggregate, a procedure which was developed in Europe, is one method which has shown promise in accomplishing the above listed objectives. This research seeks to explore the feasibility and cost effectiveness of using standard asphalt mixtures of local, less expensive aggregates for surface courses followed by a surface sprinkle treatment of a hard, durable, non-polishing layer of precoated chips to produce a durable, non-skid pavement surface for safe highway travel. Three standard mixture types are being evaluated for aggregate retention characteristics and six sprinkle aggregates are being evaluated for durability, polishing and friction characteristics. In addition, measurements of the surface texture by the silicone putty method are being made. Another feature of this research is the evaluation of a rubberized asphalt material called Overflex MS as a crack filler. It has been reported that the material could be beneficial in reducing reflective cracking. The project was begun in July of 1978 and was completed in August. A review made in the spring of 1979 indicates very satisfactory performance. It was determined from slide photos taken after construction and again in the spring that aggregate retention was very good. However, many cracks had reflected indicating that the Overflex MS had not been effective. Follow up friction test results and texture analysis were also very good. The results of these tests are shown in Appendix A.
Resumo:
Iowa DOT research in 1986, demonstrated that carbide tooth milling can produce an acceptable surface texture. Based upon that research, specifications were developed for "Pavement Surface Repair (Milling)". This specification was applied to reprofile a nine-mile section of badly faulted portland cement concrete (pcc) pavement on route 163 just east of Des Moines. The Profile Index (measured with a 25-foot California Profilograph) was improved from an average of 55.2 inches per mile prior to milling to 10.6 inches per mile after milling. The bid price was $0.75 per square yard for pcc containing limestone coarse aggregate and $1.21 for pcc containing gravel coarse aggregate. Carbide tooth milling should be considered as an acceptable alternate method of reprofiling even though there is some spalling of joints.
Resumo:
In recent years, the Iowa Department of Transportation has put greater emphasis on improving highway safety. This effort has been relatively successful with a reduction in traffic-related fatalities to levels experienced prior to 1950. The nationwide speed limit of 55 mph was probably the greatest contributor to the decline in traffic fatalities, but there have been many other efforts that have also contributed to this decline. The Iowa DOT has been testing all paved roadways periodically for friction coefficient since 1969. New techniques have been used to obtain a greater depth of surface texture on paved roadways. Transverse tined grooving has been used on portland cement concrete to provide increased texture depth.
Resumo:
Surface characteristics represent a critical issue facing pavement owners and the concrete paving industry. The traveling public has come to expect smoother, quieter, and better drained pavements, all without compromising safety. The overall surface characteristics issues is extremely complex since all pavement surface characteristics properties, including texture, noise, friction, splash/spray, rolling resistance, reflectivity/illuminance, and smoothness, are complexly related. The following needs and gaps related to achieving desired pavement surface characteristics need to be addressed: determined how changes in one surface characteristic affect, either beneficially or detrimentally, other characteristics of the pavement, determine the long-term surface and acoustic durability of different textures, and develop, evaluate, and standardize new data collection and analysis tools. It is clear that an overall strategic and coordinated research approach to the problem must be developed and pursued to address these needs and gaps.
Resumo:
Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.
Resumo:
Public roads by surface type in Iowa by Iowa Department of Transportation.
Resumo:
The measurement of pavement roughness has been the concern of highway engineers for more than 70 years. This roughness is referred to as "riding quality" by the traveling public. Pavement roughness evaluating devices have attempted to place either a graphical or numerical value on the public's riding comfort or discomfort. Early graphical roughness recorders had many different designs. In 1900 an instrument called the "Viagraph" was developed by an Irish engineer.' The "Viagraph" consisted of a twelve foot board with graphical recorder drawn over the pavement. The "Profilometer" built in Illinois in 1922 was much more impressive. ' The instrument's recorder was mounted on a frame supported by 32 bicycle wheels mounted in tandem. Many other variations of profilometers with recorders were built but most were difficult to handle and could not secure uniformly reproducible results. The Bureau of Public Roads (BPR) Road Roughness Indicator b u i l t in 1941 is the most widely used numerical roughness recorder.' The BPR Road Roughness Indicator consists of a trailer unit with carefully selected springs, means of dampening, and balanced wheel.
Crash Rates and Crash Densities on Secondary Roads in Iowa by Surface Type 2001 – 2009, July 6, 2010
Resumo:
Crash Rates and Crash Densities on Secondary Roads in Iowa by Surface Type produced by the Iowa Department of Transportation.
Resumo:
This document provides language that can be used by an Owner-Agency to develop materials and construction specifications with the objective of reducing tire/pavement noise. While the practices described herein are largely prescriptive, they have been demonstrated to increase the likelihood of constructing a durable, quieter concrete surface. Guidance is provided herein for texturing the concrete surface since texture geometry has a paramount effect on tire/pavement noise. Guidance for curing is also provided to improve strength and durability of the surface mortar, and thus to improve texture durability.
Resumo:
This document provides language that can be used by an Owner-Agency to develop materials and construction specifications with the objective of reducing tire/pavement noise. While the practices described herein are largely prescriptive, they have been demonstrated to increase the likelihood of constructing a durable, quieter concrete surface. Guidance is provided herein for texturing the concrete surface since texture geometry has a paramount effect on tire/pavement noise. Guidance for curing is also provided to improve strength and durability of the surface mortar, and thus to improve texture durability.
Resumo:
The quality and availability of aggregate for pc concrete stone varies across Iowa. Southwest Iowa is one area of the state that is short of quality aggregates. The concrete stone generally available in the area is limestone from the Argentine or Winterset ledges with an overburden of up to 150 feet. This concrete stone is classified as Class 1 durability and is susceptible to 'ID"-cracking. In addition, the general engineering soil classification rates the soils of southwest Iowa as having the poorest subgrade bearing characteristics in the state. 1 The combination of poor soils and low quality aggregate has contributed to premature deterioration of many miles of portland cement concrete pavement. Research project HR-209 was initiated in 1979 to explore alternative construction methods that may produce better pavements for southwest Iowa.
Resumo:
Freezing and thawing action induces damage to unbound gravel roads in Iowa resulting in maintenance costs for secondary road departments. Some approaches currently used by County Engineers to deal with this problem include temporarily spreading rock on the affected areas, lowering or improving drainage ditches, tiling, bridging the area with stone and geosynthetic covered by a top course of aggregate or gravel, coring boreholes and filling them with calcium chloride to melt lenses and provide drainage, and re-grading the crown to a slope of 4% to 6% to maximize spring drainage. However, most of these maintenance solutions are aimed at dealing with conditions after they occur. This study was tasked with identifying alternative approaches in the literature to mitigate the problem. An annotated bibliographic record of literature on the topic of frost-heave and thaw-weakening of gravel roads was generated and organized by topic, and all documents were assessed in terms of a suitable rating for mitigating the problem in Iowa. Over 300 technical articles were collected and selected down to about 150 relevant articles for a full assessment. The documents collected have been organized in an electronic database, which can be used as a tool by practitioners to search for information regarding the various repair and mitigation solutions, measurement technologies, and experiences that have been documented by selected domestic and international researchers and practitioners. Out of the 150+ articles, 71 articles were ranked as highly applicable to conditions in Iowa. The primary mitigation methods identified in this study included chemical and mechanical stabilization; scarification, blending, and recompaction; removal and replacement; separation, and reinforcement; geogrids and cellular confinement; drainage control and capillary barriers, and use of alternative materials. It is recommended that demonstration research projects be established to examine a range of construction methods and materials for treating granular surfaced roadways to mitigate frost-heave and thaw-weakening problems. Preliminary frost-susceptibility test results from ASTM D5916 are included for a range of Iowa materials.