3 resultados para surface modified clays

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some asphalt roadways tend to develop wheelpath ruts over time when exposed to heavy traffic. As the rutting increases in depth, the travel comfort and levels of safety decrease. A variety of remedies involving major or minor operations can be applied to eliminate ruts and renew the roadway surface. One of the simple remedies, called Ralumac microsurfacing, involves only a longitudinal band over the rut. For better coverage, ruts are filled initially and followed by a complete thin surface wearing cover over the roadway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Standard Specifications for this project included requirements for placing two 500 foot test sections of Type B asphaltic concrete with 1-1/2 per cent asbestos fibres (mix size 3/8 inch, lift thickness 3/4 inch) as part of the regular construction of the surface course. These requirements were designed to provide asbestos modified mixtures for laboratory analysis and road performance evaluation. This report provides the preliminary results and analysis of test data obtained from tests on the mixtures placed on the roadway. Previous research by G. S. Zuelke (1) and J. H. Kestzman et al (2) indicated that asphaltic concrete mixtures modified with asbestos fibres improved stability, decreased permeability, and allowed the use of higher bitumen contents. This study indicated that the addition of asbestos fibres would permit the use of higher bitumen contents, theoretically improving durability, without adverse results. An indication was also obtained to the effect that asbestos mixtures were more difficult to compact in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research project covered a wide range of activities that allowed researchers to understand the relationship between stability, pavement distress, and recycled portland cement concrete (RPCC) subbase aggregate materials. Detailed laboratory and field tests, including pavement distress surveys, were conducted at 26 sites in Iowa. Findings show that specific gravities of RPCC are lower than those of crushed limestone. RPCC aggregate material varies from poorly or well-graded sand to gravel. A modified Micro-Deval test procedure showed that abrasion losses of virgin aggregate materials were within the maximum Micro-Deval abrasion loss of 30% recommended by ASTM D6028-06. Micro-Deval abrasion loss of RPCC aggregate materials, however, was much higher than that of virgin materials and exceeded 30% loss. Modulus of elasticity of RPCC subbase materials is high but variable. RPCC subbase layers normally have low permeability. The pavement surfaces for both virgin and RPCC subbase across Iowa were evaluated to fulfill the objectives of this study related to field evaluation. Visual distress surveys were conducted to gather the detailed current pavement condition information including the type, extent, and severity of the pavement distresses. The historical pavement condition information for the surveyed field sections was extracted from the Iowa DOT's Pavement Management Information System (PMIS). The current surface condition of existing field pavements with RPCC subbase was compared with the virgin aggregate subbase sections using two different approaches. The changes in pavement condition indices (PCI and IRI) with time for both types of pavements (subbases) were compared.