3 resultados para specimen shape effect
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
For years, specifications have focused on the water to cement ratio (w/cm) and strength of concrete, despite the majority of the volume of a concrete mixture consisting of aggregate. An aggregate distribution of roughly 60% coarse aggregate and 40% fine aggregate, regardless of gradation and availability of aggregates, has been used as the norm for a concrete pavement mixture. Efforts to reduce the costs and improve sustainability of concrete mixtures have pushed owners to pay closer attention to mixtures with a well-graded aggregate particle distribution. In general, workability has many different variables that are independent of gradation, such as paste volume and viscosity, aggregate’s shape, and texture. A better understanding of how the properties of aggregates affect the workability of concrete is needed. The effects of aggregate characteristics on concrete properties, such as ability to be vibrated, strength, and resistivity, were investigated using mixtures in which the paste content and the w/cm were held constant. The results showed the different aggregate proportions, the maximum nominal aggregate sizes, and combinations of different aggregates all had an impact on the performance in the strength, slump, and box test.
Resumo:
The objectives of this research were the collection and evaluation of the data pertaining to the importance of concrete mixing time on air content and distribution, consolidation and workability for pavement construction. American Society for Testing and Materials (ASTM) standard C 94 was used to determine the significance of the mixing time on the consistency of the mix being delivered and placed on grade. Measurements of unit weight, slump, air content, retained coarse aggregate and compressive strength were used to compare the consistency of the mix in the hauling unit at the point of mixing and at the point placement. An analysis of variance was performed on the data collected from the field tests. Results were used to establish the relationship between selected mixing time and the portland cement concrete properties tested. The results were also used to define the effect of testing location (center and side of truck, and on the grade) on the concrete properties. Compressive strength test concepts were used to analyze the hardened concrete pavement strength. Cores were obtained at various locations on each project on or between vibrator locations to evaluate the variance in each sample, between locations, and mixing times. A low-vacuum scanning electron microscope (SEM) was used to study air void parameters in the concrete cores. Combining the data from these analysis thickness measurements and ride in Iowa will provide a foundation for the formulation of a performance based matrix. Analysis of the air voids in the hardened concrete provides a description of the dispersion of the cemtitious materials (specifically flyash) and air void characteristics in the pavement. Air void characteristics measured included size, shape and distribution.
Resumo:
The No Passing Zone sign (Wl0-4) was designed in 1958 for the purpose of informing the driver contemplating a passing maneuver of hazardous sight conditions ahead. This warning sign, of pennent shape design, was placed on the left side of the road so as to be more conspicuous to the intended driver. During the two year period 1959-1960, the Wl0-4 signs were erected throughout the Iowa Primary Road System.