14 resultados para soybean soapstock (SS)

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

State Agency Audit Report

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State Agency Audit Report

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The State of Iowa currently has approximately 69,000 miles of unpaved secondary roads. Due to the low traffic count on these unpaved o nts as ng e two dust ed d roads, paving with asphalt or Portland cement concrete is not economical. Therefore to reduce dust production, the use of dust suppressants has been utilized for decades. This study was conducted to evaluate the effectiveness of several widely used dust suppressants through quantitative field testing on two of Iowa’s most widely used secondary road surface treatments: crushed limestone rock and alluvial sand/gravel. These commercially available dust suppressants included: lignin sulfonate, calcium chloride, and soybean oil soapstock. These suppressants were applied to 1000 ft test sections on four unpaved roads in Story County, Iowa. Tduplicate field conditions, the suppressants were applied as a surface spray once in early June and again in late August or early September. The four unpaved roads included two with crushed limestone rock and two with alluvial sand/gravel surface treatmewell as high and low traffic counts. The effectiveness of the dust suppressants was evaluated by comparing the dust produced on treated and untreated test sections. Dust collection was scheduled for 1, 2, 4, 6, and 8 weeks after each application, for a total testiperiod of 16 weeks. Results of a cost analysis between annual dust suppressant application and biennial aggregate replacement indicated that the cost of the dust suppressant, its transportation, and application were relatively high when compared to that of thaggregate types. Therefore, the biennial aggregate replacement is considered more economical than annual dust suppressant application, although the application of annual dust suppressant reduced the cost of road maintenance by 75 %. Results of thecollection indicated that the lignin sulfonate suppressant outperformed calcium chloride and soybean oil soapstock on all four unpavroads, the effect of the suppressants on the alluvial sand/gravel surface treatment was less than that on the crushed limestone rock, the residual effects of all the products seem reasonably well after blading, and the combination of alluvial sand/gravel surface treatment anhigh traffic count caused dust reduction to decrease dramatically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of resistant soybean varieties is a very effective strategy for managing soybean cyst nematode (SCN), and numerous SCN-resistant soybean varieties are available for Iowa soybean growers. Each year, public and private SCN-resistant soybean varieties are evaluated in SCN-infested fields throughout Iowa by Iowa State University personnel. The research described in this report was performed to assess the agronomic performance of maturity group (MG) I, II, and III SCN-resistant soybean varieties and to determine the effects of the varieties on SCN numbers or population densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean cyst nematode (SCN) causes the greatest yield loss of any single pathogen of soybean in Iowa. An estimated 50 million bushels were lost in Iowa to SCN in 2004. Damage from SCN is not limited to yield loss from root feeding; SCN also makes other diseases like sudden death syndrome, iron deficiency chlorosis, Pythium, Phytophthora root and stem rot and brown stem rot worse. Once established in a field, SCN cannot be eradicated. However, the use of multiple management tactics can help minimize yield loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Producers continually strive for high yielding soybeans. The state-wide average yield for Iowa is now more than 50 bu./acre. The “yield plateau” reported by many producers does not exist, and is a perception largely brought on by misuse of an oversimplified management system. High yielding soybeans are achieved through improved and targeted management decisions. Improved agronomic decisions for soybeans are critical since soybean is very sensitive to stresses that influence soybean growth, development and yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planting date for soybeans should be based on seedbed conditions and calendar date rather than soil temperature. The optimum time to plant soybeans in Iowa is the last week of April for the southern two thirds of Iowa and the first week of May for the northern one third of Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planting date for soybeans should be based on seedbed conditions and calendar date rather than soil temperature. The optimum time to plant soybeans in Iowa is the last week of April for the southern two thirds of Iowa and the first week of May for the northern one third of Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This special report from the Iowa State University Cooperative Extension Service, no. 53. is designed to aid those involved in soybean production to more fully understand how the soybean plant develops. The content is both basic and applied. The basic information explains soybean growth and development through one life cycle. Management guides pinpoint practices needed for optimum plant growth and production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This revised special report from the Iowa State University Cooperative Extension Service, no. 53. is designed to aid those involved in soybean production to more fully understand how the soybean plant develops. The content is both basic and applied. The basic information explains soybean growth and development through one life cycle. Management guides pinpoint practices needed for optimum plant growth and production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granular shoulders need to be maintained on a regular basis because edge ruts and potholes develop, posing a safety hazard to motorists. The successful mitigation of edge-rut issues for granular shoulders would increase safety and reduce the number of procedures currently required to maintain granular shoulders in Iowa. In addition, better performance of granular shoulders reduces the urgency to pave granular shoulders. Delaying or permanently avoiding paving shoulders where possible allows more flexibility in making investments in the road network. To stabilize shoulders and reduce the number of maintenance cycles necessary per season, one possible stabilizing agent—acidulated soybean oil soapstock—was investigated in this research. A pilot testing project was conducted for selected problematic shoulders in northern and northeastern Iowa. Soapstock was applied on granular shoulders and monitored during application and pre- and post-application. Application techniques were documented and the percentage of application success was calculated for each treated shoulder section. As a result of this research, it was concluded that soybean oil soapstock can be an effective stabilizer for granular shoulders under certain conditions. The researchers also developed draft specifications that could possibly be used to engage a contractor to perform the work using a maintenance-type construction contract. The documented application techniques from this project could be used as guidance for those who want to apply soapstock for stabilizing granular shoulders but might not be familiar with this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road dust is caused by wind entraining fine material from the roadway surface and the main source of Iowa road dust is attrition of carbonate rock used as aggregate. The mechanisms of dust suppression can be considered as two processes: increasing particle size of the surface fines by agglomeration and inhibiting degradation of the coarse material. Agglomeration may occur by capillary tension in the pore water, surfactants that increase bonding between clay particles, and cements that bind the mineral matter together. Hygroscopic dust suppressants such as calcium chloride have short durations of effectiveness because capillary tension is the primary agglomeration mechanism. Somewhat more permanent methods of agglomeration result from chemicals that cement smaller particles into a mat or larger particles. The cements include lignosulfonates, resins, and asphalt products. The duration of the cements depend on their solubility and the climate. The only dust palliative that decreases aggregate degradation is shredded shingles that act as cushions between aggregate particles. It is likely that synthetic polymers also provide some protection against coarse aggregate attrition. Calcium chloride and lignosulfonates are widely used in Iowa. Both palliatives have a useful duration of about 6 months. Calcium chloride is effective with surface soils of moderate fine content and plasticity whereas lignin works best with materials that have high fine content and high plasticity indices. Bentonite appears to be effective for up to two years and works well with surface materials having low fines and plasticity and works well with limestone aggregate. Selection of appropriate dust suppressants should be based on characterization of the road surface material. Estimation of dosage rates for potential palliatives can be based on data from this report, from technical reports, information from reliable vendors, or laboratory screening tests. The selection should include economic analysis of construction and maintenance costs. The effectiveness of the treatment should be evaluated by any of the field performance measuring techniques discussed in this report. Novel dust control agents that need research for potential application in Iowa include; acidulated soybean oil (soapstock), soybean oil, ground up asphalt shingles, and foamed asphalt. New laboratory evaluation protocols to screen additives for potential effectiveness and determine dosage are needed. A modification of ASTM D 560 to estimate the freeze-thaw and wet-dry durability of Portland cement stabilized soils would be a starting point for improved laboratory testing of dust palliatives.