2 resultados para source analysis

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this document is to present Iowa’s Adult Literacy Benchmark Analysis Report: Program Year 2002. The report is designed to provide a supplemental analysis of the information presented in Tables 5-19 (pp. 16-37) referenced in the publication titled Iowa's Adult Basic Education Program Annual Benchmark Report: Program Year 2002. The original data source for Tables 1-7 is from Iowa’s National Reporting System (NRS) report Tables 4B and 5 and the publication titled Iowa’s Community College Basic Literacy Skills Credential Program: Program Year 2002. (See Appendix B of Iowa’s Adult Basic Education Program Annual Benchmark Report: Program Year 2002, [pp. 54-55] and Iowa’s Community College Basic Literacy Skills Credential Program Annual Report: Program Year 2002 Tables 1-2 [pp. 6-7]).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.