4 resultados para soil-vegetation interaction
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This investigation is the final phase of a three part study whose overall objectives were to determine if a restraining force is required to prevent inlet uplift failures in corrugated metal pipe (CMP) installations, and to develop a procedure for calculating the required force when restraint is required. In the initial phase of the study (HR-306), the extent of the uplift problem in Iowa was determined and the forces acting on a CMP were quantified. In the second phase of the study (HR- 332), laboratory and field tests were conducted. Laboratory tests measured the longitudinal stiffness ofCMP and a full scale field test on a 3.05 m (10 ft) diameter CMP with 0.612 m (2 ft) of cover determined the soil-structure interaction in response to uplift forces. Reported herein are the tasks that were completed in the final phase of the study. In this phase, a buried 2.44 m (8 ft) CMP was tested with and without end-restraint and with various configurations of soil at the inlet end of the pipe. A total of four different soil configurations were tested; in all tests the soil cover was constant at 0.61 m (2 ft). Data from these tests were used to verify the finite element analysis model (FEA) that was developed in this phase of the research. Both experiments and analyses indicate that the primary soil contribution to uplift resistance occurs in the foreslope and that depth of soil cover does not affect the required tiedown force. Using the FEA, design charts were developed with which engineers can determine for a given situation if restraint force is required to prevent an uplift failure. If an engineer determines restraint is needed, the design charts provide the magnitude of the required force. The design charts are applicable to six gages of CMP for four flow conditions and two types of soil.
Resumo:
In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.
Resumo:
This Phase I report describes a preliminary evaluation of a new compaction monitoring system developed by Caterpillar, Inc. (CAT), for use as a quality control and quality assurance (QC/QA) tool during earthwork construction operations. The CAT compaction monitoring system consists of an instrumented roller with sensors to monitor machine power output in response to changes in soil machine interaction and is fitted with a global positioning system (GPS) to monitor roller location in real time. Three pilot tests were conducted using CAT’s compaction monitoring technology. Two of the sites were located in Peoria, Illinois, at the Caterpillar facilities. The third project was an actual earthwork grading project in West Des Moines, Iowa. Typical construction operations for all tests included the following steps: (1) aerate/till existing soil; (2) moisture condition soil with water truck (if too dry); (3) remix; (4) blade to level surface; and (5) compact soil using the CAT CP-533E roller instrumented with the compaction monitoring sensors and display screen. Test strips varied in loose lift thickness, water content, and length. The results of the study show that it is possible to evaluate soil compaction with relatively good accuracy using machine energy as an indicator, with the advantage of 100% coverage with results in real time. Additional field trials are necessary, however, to expand the range of correlations to other soil types, different roller configurations, roller speeds, lift thicknesses, and water contents. Further, with increased use of this technology, new QC/QA guidelines will need to be developed with a framework in statistical analysis. Results from Phase I revealed that the CAT compaction monitoring method has a high level of promise for use as a QC/QA tool but that additional testing is necessary in order to prove its validity under a wide range of field conditions. The Phase II work plan involves establishing a Technical Advisor Committee, developing a better understanding of the algorithms used, performing further testing in a controlled environment, testing on project sites in the Midwest, and developing QC/QA procedures.
Resumo:
According to prevailing ecological theory one would expect the most stable vegetation on sites which are least disturbed (Odum 1971). According to theory one would also expect the most diversity of species on undisturbed sites (Odum 1971). This stable and diverse community would be produced over a period of many years through a process of plant succession where annual herbs are replaced by perennial herbs and finally woody plants would come to dominate and perpetuate the community. Another ecological theory holds that the complexity (structure and species diversity) of a plant community is dependent upon the amount of disturbance to which it is subjected (Woodwell, 1970). According to this theory the normal succession of a plant community through its various stages may be arrested at some point depending upon the nature and severity of the disturbance. In applying these theories to roadside vegetation it becomes apparent that mass herbicide spraying and extensive mowing of roadsides has produced a relatively simple and unstable vegetation. It follows that if disturbances were reduced not only would the roadside plant community increase in stability but maintenance costs and energy usage would be reduced. In this study we have investigated several aspects of reduced disturbances on roadside vegetation. Research has centered on the effectiveness of spot spraying techniques on noxious weed control, establishment of native grass cover where ditch cleaning and other disturbance has left the bare soil exposed and the response of roadside vegetation when released from annual mass spraying.