5 resultados para sensor LiDAR
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A good system of preventive bridge maintenance enhances the ability of engineers to manage and monitor bridge conditions, and take proper action at the right time. Traditionally infrastructure inspection is performed via infrequent periodical visual inspection in the field. Wireless sensor technology provides an alternative cost-effective approach for constant monitoring of infrastructures. Scientific data-acquisition systems make reliable structural measurements, even in inaccessible and harsh environments by using wireless sensors. With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. The main goal of this project was to implement a wireless sensor network for monitoring the behavior and integrity of highway bridges. At the core of the system is a low-cost, low power wireless strain sensor node whose hardware design is optimized for structural monitoring applications. The key components of the systems are the control unit, sensors, software and communication capability. The extensive information developed for each of these areas has been used to design the system. The performance and reliability of the proposed wireless monitoring system is validated on a 34 feet span composite beam in slab bridge in Black Hawk County, Iowa. The micro strain data is successfully extracted from output-only response collected by the wireless monitoring system. The energy efficiency of the system was investigated to estimate the battery lifetime of the wireless sensor nodes. This report also documents system design, the method used for data acquisition, and system validation and field testing. Recommendations on further implementation of wireless sensor networks for long term monitoring are provided.
Resumo:
This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially continuous roughness maps have potential for the identification of localized roughness features, which would be a significant improvement over traditional profiling methods. This report specifically illustrates the use of terrestrial laser scanning (TLS) and photogrammetry using a process known as structure from motion (SFM) to acquire point clouds and illustrates the use of these point clouds in evaluating road roughness. Five roadway sections were chosen for scanning and testing: three gravel road sections, one portland cement concrete (PCC) section, and one asphalt concrete (AC) section. To compare clouds obtained from terrestrial laser scanning and photogrammetry, the coordinates of the clouds for the same section on the same date were matched using open source computer code. The research indicates that the technologies described are very promising for evaluating road roughness. The major advantage of both technologies is the large amount of data collected, which allows the evaluation of the full surface. Additional research is needed to further develop the use of dense 3D point clouds for roadway assessment.
Resumo:
US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.
Resumo:
The main objective of this study was to utilize light detection and ranging (LIDAR) technology to obtain highway safety-related information. The safety needs of older drivers in terms of prolonged reaction times were taken into consideration. The tasks undertaken in this study were (1) identification of crashes that older drivers are more likely to be involved in, (2) identification of highway geometric features that are important in such crashes, (3) utilization of LIDAR data for obtaining information on the identified highway geometric features, and (4) assessment of the feasibility of using LIDAR data for such applications. A review of previous research indicated that older drivers have difficulty negotiating intersections, and it was recognized that intersection sight triangles were critical to safe intersection negotiation. LIDAR data were utilized to obtain information on potential sight distance obstructions at six selected intersections located on the Iowa Highway 1 corridor by conducting in-office line-of-sight analysis. Crash frequency, older driver involvement, and data availability were considerations in the selection of the six intersections. Results of the in-office analysis were then validated by visiting the intersections in the field. Sixty-six potential sight distance obstructions were identified by the line-of-sight analysis, out of which 62 (89.8%) were confirmed while four (5.8%) were not confirmed by the video. At least three (4.4%) potential sight distance obstructions were discovered in the video that were not detected by the line-of-sight analysis. The intersection with the highest crash frequency involving older drivers was correctly found to have obstructions located within the intersection sight triangles. Based on research results, it is concluded that LIDAR data can be utilized for identifying potential sight distance obstructions at intersections. The safety of older drivers can be enhanced by locating and rectifying intersections with obstructions in sight triangles.
Resumo:
Many transportation agencies maintain grade as an attribute in roadway inventory databases; however, the information is often in an aggregated format. Cross slope is rarely included in large roadway inventories. Accurate methods available to collect grade and cross slope include global positioning systems, traditional surveying, and mobile mapping systems. However, most agencies do not have the resources to utilize these methods to collect grade and cross slope on a large scale. This report discusses the use of LIDAR to extract roadway grade and cross slope for large-scale inventories. Current data collection methods and their advantages and disadvantages are discussed. A pilot study to extract grade and cross slope from a LIDAR data set, including methodology, results, and conclusions, is presented. This report describes the regression methodology used to extract and evaluate the accuracy of grade and cross slope from three dimensional surfaces created from LIDAR data. The use of LIDAR data to extract grade and cross slope on tangent highway segments was evaluated and compared against grade and cross slope collected using an automatic level for 10 test segments along Iowa Highway 1. Grade and cross slope were measured from a surface model created from LIDAR data points collected for the study area. While grade could be estimated to within 1%, study results indicate that cross slope cannot practically be estimated using a LIDAR derived surface model.