2 resultados para self-organizing maps of Kohonen
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Zeman Barn (86-00028) is an early twentieth-century example of a gothic roofed barn and is part of the Zeman Farmstead located along U.S. Highway 30 in Otter Creek Township (Township 38N, Range 14W), Tama County, Iowa (Figures 1 and 2). The farmstead was initially evaluated in a reconnaissance architectural survey conducted in 1998 by The Louis Berger Group, Inc (Berger). An intensive architectural survey of the property by Berger’s Principal Architectural Historian, Martha H. Bowers, evaluated the farmstead as not being eligible for listing in the National Register of Historic Places (National Register) but noted that the barn appears to be eligible for listing in the National Register under Criterion C (Bowers 1998). At the request of the Iowa Department of Transportation, Berger completed the recordation project to provide a documentary record of the Zeman Barn in accordance with the guidelines set forth by the Iowa State Historic Preservation Office regarding historic property studies for barns. Background research for this project was conducted in September 2008 and April 2009. The property was inspected and photographed in May 2008. Information on the property was gathered through background research, interviews with Zeman family members, field investigation, and photo documentation. Historical maps of the project area were used to collect data necessary for developing regional and local historic contexts. The research for this report was conducted at the Tama County Courthouse and the Tama County Historical Museum Genealogical Library, both in Toledo. Much of the background research for the project was conducted by Camilla Deiber and Michael Dulle. Ms. Deiber also prepared the photographic documentation, plan drawings, and the graphics used in this report. Mr. Roger L. Ciuffo conducted interviews with Zeman family members and wrote this report.
Resumo:
An innovative structural system for pier columns was investigated through a series of laboratory experiments. The columns and connections examined were comprised of precast concrete segments to accelerate construction. In addition some of the columns employed unbonded post-tensioning to self-center the columns when subjected to lateral loads and structural fuses to control large lateral deflections, dissipate energy, and expedite repair in the event of a catastrophic loading event. Six cantilever columns with varying component materials and connection details were subjected to a regimen of vertical dead loads and cyclic, quasi-static lateral loads. One column was designed as a control column to represent the behavior of a conventional reinforced concrete column and provide a basis for comparison with the remaining five jointed columns designed with the proposed structural system. After sustaining significant damage, the self-centering, jointed columns were repaired by replacing the structural fuses and retested to failure to investigate the effectiveness of the repair. The experiments identified both effective and unsatisfactory details for the jointed system. Two of the jointed columns demonstrated equivalent lateral strength, greater lateral stiffness, and greater lateral deformation capacity than the control column. The self-centering capability of the jointed columns was clearly demonstrated as well, and the repair technique proved effective as demonstrated by nearly identical pre and post repair behavior. The authors believe the proposed system to be a feasible alternative to conventional pier systems and recommend further development of details.