105 resultados para safety monitoring
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Roadway Lighting and Safety: Phase II – Monitoring Quality, Durability and Efficiency, November 2011
Resumo:
This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.
Roadway Lighting and Safety: Phase II – Monitoring Quality, Durability and Efficiency, November 2011
Resumo:
This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.
Resumo:
Following a high wind event on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high wind events. In subsequent years, a similar system was installed on the Red Rock Reservoir Bridge to provide the same wind monitoring capabilities and notifications to the Iowa DOT. The objectives of the system development and implementation are to notify personnel when the wind speed reaches a predetermined threshold such that the bridge can be closed for the safety of the public, correlate structural response with wind-induced response, and gather historical wind data at these structures for future assessments. This report describes the two monitoring systems, their components, upgrades, functionality, and limitations, and results from one year of wind data collection at both bridges.
Resumo:
Following high winds on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high winds. Although measures were put into place following the 2006 event at the Saylorville Reservoir Bridge, knowledge of the performance of this bridge during high wind events was incomplete. Therefore, the Saylorville Reservoir Bridge was outfitted with an information management system to investigate the structural performance of the structure and the potential for safety risks. In subsequent years, given the similarities between the Saylorville and Red Rock Reservoir bridges, a similar system was added to the Red Rock Reservoir Bridge southeast of Des Moines. The monitoring system developed and installed on these two bridges was designed to monitor the wind speed and direction at the bridge and, via a cellular modem, send a text message to Iowa DOT staff when wind speeds meet a predetermined threshold. The original intent was that, once the text message is received, the bridge entrances would be closed until wind speeds diminish to safe levels.
Resumo:
Excessive speed on State and County highways is recognized as a serious problem by many Iowans. Speed increases both the risk and severity of accidents. Studies conducted by the FHWA and NHTSA have concluded that if average speeds were increased by five MPH, fatalities would increase by at least 2,200 annually. Along with the safety problems associated with excessive speed are important energy considerations. When the national speed limit was lowered to 55 MPH in 1974, a tremendous savings in fuel was realized. The estimated actual savings for automobiles amounted to 2.2 billion gallons, an average of 20.75 gallons for each of the 106 million automobiles registered in 1975. These benefits prompted the Federal-Aid Amendment of 1974 requiring annual State enforcement certification as a prerequisite for approval of Federal-aid highway projects. In 1978, the United States D.O.T. recommended to Congress significant changes in speed limit legislation designed to increase compliance with the national speed limit. The Highway Safety Act of 1978 provides for both withholding Federal-aid highway funds and awarding incentive grants based on speed compliance data submitted annually. The objective of this study was to develop and make operational, an automatic speed monitoring system which would have flexible capabilities of collecting accurate speed data on all road systems in Iowa. It was concluded that the Automatic Speed Monitoring Program in Iowa has been successful and needed data is being collected in the most economical manner possible.
Resumo:
"Metric Training For The Highway Industry", HR-376 was designed to produce training materials for the various divisions of the Iowa DOT, local government and the highway construction industry. The project materials were to be used to introduce the highway industry in Iowa to metric measurements in their daily activities. Five modules were developed and used in training over 1,000 DOT, county, city, consultant and contractor staff in the use of metric measurements. The training modules developed deal with the planning through operation areas of highway transportation. The materials and selection of modules were developed with the aid of an advisory personnel from the highway industry. Each module is design as a four hour block of instruction and a stand along module for specific types of personnel. Each module is subdivided into four chapters with chapter one and four covering general topics common to all subjects. Chapters two and three are aimed at hands on experience for a specific group and subject. This module includes: Module 4 - Transportation Planning and Traffic Monitoring. Hands on examples of applications of metric measurements in the development of planning reports and traffic data collection are included in this module.
Resumo:
Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized.
Resumo:
Remote monitoring through the use of cameras is widely utilized for traffic operation, but has not been utilized widely for roadway maintenance operations. The Utah Department of Transportation (UDOT) has implemented a new remote monitoring system, referred to as a Cloud-enabled Remote Video Streaming (CRVS) camera system for snow removal-related maintenance operations in the winter. The purpose of this study was to evaluate the effectiveness of the use of the CRVS camera system in snow removal-related maintenance operations. This study was conducted in two parts: opinion surveys of maintenance station supervisors and an analysis on snow removal-related maintenance costs. The responses to the opinion surveys mostly displayed positive reviews of the use of the CRVS cameras. On a scale of 1 (least effective) to 5 (most effective), the average overall effectiveness given by the station supervisors was 4.3. An expedition trip for this study was defined as a trip that was made to just check the roadways if snow-removal was necessary. The average of the responses received from surveys was calculated to be a 33 percent reduction in expedition trips. For the second part of this study, an analysis was performed on the snow removal-related maintenance cost data provided by UDOT to see if the installation of a CRVS camera had an effect in reducing expedition trips. This expedition cost comparison was performed for 10 sets of maintenance stations within Utah. It was difficult to make any definitive inferences from the comparison of expedition costs over the years for which precipitation and expedition cost data were available; hence a statistical analysis was performed using the Mixed Model ANOVA. This analysis resulted in an average of 14 percent higher ratio of expedition costs at maintenance stations with a CRVS camera before the installation of the camera compared to the ratio of expedition costs after the installation of the camera. This difference was not proven to be statistically significant at the 95 percent confident level, but indicated that the installation of CRVS cameras was on the average helpful in reducing expedition costs and may be considered practically significant. It is recommended that more detailed and consistent maintenance cost records be prepared for accurate analysis of cost records for this type of study in the future.
Resumo:
The Iowa Prescription Monitoring Program (PMP) provides authorized prescribers and pharmacists with information regarding their patients’ use of controlled substances and is used as a tool in determining appropriate prescribing and treatment of patients without fear of contributing to a patient’s abuse of or dependence on addictive drugs or diversion of those drugs to illicit use. Iowa pharmacies are required to report to the Iowa PMP all Schedule II, III, and IV controlled substances dispensed by the pharmacy to ambulatory patients.
Resumo:
The Center for Transportation Research and Education (CTRE) issued a report in July 2003, based on a sample study of the application of remote sensed image land use change detection to the methodology of traffic monitoring in Blackhawk County, Iowa. In summary, the results indicated a strong correlation and a statistically significant regression coefficient between the identification of built-up land use change areas from remote sensed data and corresponding changes in traffic patterns, expressed as vehicle miles traveled (VMT). Based on these results, the Iowa Department of Transportation (Iowa DOT) requested that CTRE expand the study area to five counties in the southwest quadrant of the state. These counties are scheduled for traffic counts in 2004, and the Iowa DOT desired the data to 1) evaluate the current methodology used to place the devices; 2) potentially influence the placement of traffic counting devices in areas of high built-up land use change; and 3) determine if opportunities exist to reduce the frequency and/or density of monitoring activity in lower trafficked rural areas of the state. This project is focused on the practical application of built-up land use change data for placement of traffic count data recording devices in five southwest Iowa counties.
Resumo:
Pavements tend to deteriorate with time under repeated traffic and/or environmental loading. By detecting pavement distresses and damage early enough, it is possible for transportation agencies to develop more effective pavement maintenance and rehabilitation programs and thereby achieve significant cost and time savings. The structural health monitoring (SHM) concept can be considered as a systematic method for assessing the structural state of pavement infrastructure systems and documenting their condition. Over the past several years, this process has traditionally been accomplished through the use of wired sensors embedded in bridge and highway pavement. However, the use of wired sensors has limitations for long-term SHM and presents other associated cost and safety concerns. Recently, micro-electromechanical sensors and systems (MEMS) and nano-electromechanical systems (NEMS) have emerged as advanced/smart-sensing technologies with potential for cost-effective and long-term SHM. This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) MEMS sensors embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system for health monitoring of concrete pavement (Final Report Volume II).
Resumo:
Agency Performance Plan
Resumo:
Monthly newsletter for public safety
Resumo:
Monthly newsletter for public safety
Resumo:
Monthly newsletter for public safety