7 resultados para retard
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The concept of cracking and seating a portland cement concrete (pcc) pavement prior to laying an asphalt cement concrete (acc) surface in order to reduce reflection cracking has been around since the 1950s. With the advent of improved cracking equipment, this method gained renewed interest in the 1970s and 1980s. This project incorporated six test sections of which four were cracked and seated prior to being overlaid. Fremont County decided to utilize only a 0.9 m (3 ft) cracking pattern based on a 30 m (100 ft) trial test section. Pavement cracking appeared to be effective in reducing primarily longitudinal reflectance cracking, but only marginally successful in the reduction of transverse reflective cracking.
Resumo:
Reflective cracking of asphalt resurfacing has been a concern for a long time. Years ago wire mesh was used to control widening cracks. More recently it has been fabrics or fiberglass. In 1986, part of the proposed fabric was deleted from projects in different parts of Iowa with various histories and designs. These projects were monitored in 1988, 1989, 1990 and 1992 with only the thin (3 inch) overlays on newly widened pavements showing a significantly greater percentage of cracks in the areas where the fabric was deleted.
Resumo:
The crack and seat (C & S) method of rehabilitating concrete pavements has been proposed to reduce the incidence of reflective cracking in asphalt overlays. These cracked pieces help reduce the thermal effects on lateral joint movement while the seating of slab pieces reduces vertical movement. This 1986 project demonstrated that a 0.6 m x 0.9 m (2 ft x 3 ft) cracking pattern was optimal to retard reflective cracking in an asphalt overlay. The best performance among three C & S test sections was section 4 with a 0.6 m x 0.9 m (2 ft x 3 ft) cracking pattern and 7.6 cm (3 in) overlay. Structural ratings determined from the Road Rater™ indicated little difference between each C & S section with varying AC thicknesses and crack spacings. Although reflection cracking is reduced in the early years after construction, the effectiveness of the C & S method diminishes over time.
Resumo:
Principles and techniques that should be followed to either promote or retard coppice regeneration.
Resumo:
The objectives of this research project are: (1) To determine the feasibility of proportioning, mixing, placing and finishing a dense portland cement concrete in a bridge floor using conventional mixing, placing and finishing equipment. (2) To determine the economics, longevity, maintenance performance and protective qualities of a dense portland cement concrete bridge floor when using a high rangewater reducing admixture. The purpose of a high range water reducing admixture is to produce a dense, high quality concrete at a low water-cement ratio witj adequate workability. A low water-cement ratio contributes greatly to increased strength. The normal 7 day strength of untreated concrete would be expected i n 3 days using a superplasticizer. A dense concrete also has the desirable properties of excellent durability and reduced permeability. It is felt that a higher quality, denser, higher strength portland cement concrete can be produced and placed, using conventional equipment, by the addition of a high range water reducing admixture. Such a dense concrete, w i t h a water/cement ratio of approximately 0.30 to 0.35, would be expected to be much less permeable and thus retard the intrusion of chloride. With care and attention given to obtaining the design cover over steel (2% inches clear), it i s hoped that protection for the design life of the structure will be obtained. Evaluation of this experimental concrete bridge floor included chloride content and delamination testing of the concrete floor five years after construction. A comparitive evaluation o f a control section o f concrete without the water reducing admixture was conducted. Other items o f comparison include workability during construction, strength, density, water-cement ratio and chloride penetration.
Resumo:
The Iowa Department of Transportation (DOT) is continually improving the pavement management program and striving to reduce maintenance needs. Through a 1979 pavement management study, the Iowa DOT became a participant in a five state Federal Highway Administration (FHWA) study of "Transverse Cracking of Asphalt Pavements". There were numerous conclusions and recommendations but no agreement as to the major factors contributing to transverse cracking or methods of preventing or reducing the occurrence of transverse cracking. The project did focus attention on the problem and generated ideas for research. This project is one of two state funded research projects that were a direct result of the FHWA project. Iowa DOT personnel had been monitoring temperature susceptibility of asphalt cements by the Norman McLeod Modified Penetration Index. Even though there are many variables from one asphalt mix to another, the trend seemed to indicate that the frequency of transverse cracking was highly dependent on the temperature susceptibility. Research project HR-217 "Reducing the Adverse Effects of Transverse Cracking" was initiated to verify the concept. A final report has been published after a four-year evaluation. The crack frequency with the high temperature susceptible asphalt cement was substantially greater than for the low temperature susceptible asphalt cement. An increased asphalt cement content in the asphalt treated base also reduced the crack frequency. This research on prevention of transverse cracking with fabric supports the following conclusions: 1. Engineering fabric does not prevent transverse cracking of asphalt cement concrete. 2. Engineering fabric may retard the occurrence of transverse cracking. 3. Engineering fabric does not contribute significantly to the structural capability of an asphalt concrete pavement.
Resumo:
Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.