3 resultados para range-domain pairs
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Iowa Code Section 216A.135 requires the Criminal and Juvenile Justice Planning Advisory Council (CJJPAC) to submit a long-range plan for Iowa's justice system to the Governor and General Assembly every five years. The first plan developed after the creation of the Division of Criminal and Juvenile Justice Planning was issued in 1990 and annually updated through 1994. Since 1992, appropriation law has required the CJJPAC to coordinate their planning activities with those of the Iowa Juvenile Justice Advisory Council (JJAC).
Resumo:
The attached plan builds upon work done over the last decade. The first plan developed after the creation of the Division of Criminal and Juvenile Justice Planning in 1986 was issued in 1990 and annually updated through 1994. Since 1992, the CJJPAC has been required to coordinate their planning activities with those of the Iowa Juvenile Justice Advisory Council (JJAC). In 1995, these two councils developed a new plan consisting of a set of long-range justice system goals to assist policy makers and justice system practitioners as they plan and operate the justice system through the next twenty years. The statutory mandate for such long-range planning required the identification of goals specific enough to provide guidance, but broad enough to be of relevance over a long period of time. The long-range goals adopted by these councils in 1995 covered a wide variety of topics and offered a framework within which current practices could be defined and assessed. Collectively, these long-range goals were meant to provide a single source of direction to the complex assortment of practitioners and policymakers whose individual concerns and decisions collectively define the nature and effectiveness of Iowa’s justice system. The twenty-year goals established in 1995 were reviewed by the councils in 2000 to assess their current relevance. It was determined that, with a few revisions, the goals established in 1995 should be restated in 2000 with a renewed emphasis on their long-range status. This plan builds upon those issued in 1995 and 2000, continuing much of the emphasis of plans, with some new directions charted as appropriate.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.