5 resultados para poly(ethylene) degradation
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Proceedings of a workshop held in Omaha, Nebraska, 22-25 January, 1978. Edited by W.W. Sayre and J.F. Kennedy. Iowa Conservation Commission. IIHR Report No. 215. Iowa Institute of Hydraulic Research, the University of Iowa, Iowa City, Iowa.
Resumo:
Steel reinforcing bar (rebar) corrosion due to chlorine ingress is the primary degradation mechanism for bridge decks. In areas where rock salt is used as a de-icing agent, salt water seeps into the concrete through cracks, causing corrosion of the rebar and potentially leading to catastrophic failure if not repaired. This project explores the use of radio frequency identification (RFID) tags as low-cost corrosion sensors. RFID tags, when embedded in concrete, will fail due to corrosion in the same manner as rebar after prolonged exposure to salt water. In addition, the presence of salt water interferes with the ability to detect the tags, providing a secondary mechanism by which this method can work. During this project, a fieldable RFID equipment setup was constructed and tested. In addition to a number of laboratory experiments to validate the underlying principles, RFID tags were embedded and tested in several actual bridge decks. Two major challenges were addressed in this project: issues associated with tags not functioning due to being in close proximity to rebar and issues associated with portland concrete coming in direct contact with the tags causing a detuning effect and preventing the tags from operating properly. Both issues were investigated thoroughly. The first issue was determined to be a problem only if the tags are placed in close proximity to rebar. The second issue was resolved by encapsulating the tag. Two materials, polyurethane spray foam and extruded polystyrene, were identified as providing good performance after testing, both in the lab and in the field.
Resumo:
Intrusion of deicing materials and surface water into concrete bridge decks is a main contributor in deck reinforcing steel corrosion and concrete delamination. Salt, spread on bridge decks to melt ice, dissolves in water and permeates voids in the concrete deck. When the chloride content of the concrete in contact with reinforcing steel reaches a high enough concentration, the steel oxidizes. In Iowa, the method used to reduce bridge deck chloride penetration is the application of a low slump dense concrete overlay after the completion of all Class A and Class B floor repairs. A possible alternative to the use of dense concrete overlays, developed by Poly-Carb, Inc., is the MARK-163 FLEXOGRID Overlay System. FLEXOGRID is a two component system of epoxy and urethane which is applied on a bridge deck to a minimum thickness of ¼ inch. An aggregate mixture of silica quartz and aluminum oxide is broadcast onto the epoxy at a prescribed rate to provide deck protection and superior friction properties. The material is mixed on site and applied to the deck in a series of lifts (usually two) until the desired overlay thickness has been attained.
Resumo:
There is an ongoing drive towards improvements and achieving success in effective and long term sealing of portland cement concrete pavement contraction joints. A variety of joint sealing products and procedures have been applied in Iowa in search of improvements in seal performance. Hot poured rubberized asphalt products were mainly used for sealing all joints in earlier years for highways. In the 1980s, silicone sealant products were becoming popular, especially for the major highways. As a high level of sealant performance was not achieved from silicones in Iowa conditions, other sealing products were tried. Preformed neoprene compression seals are being tried as a substitution for silicone sealants. Due to high costs of materials and installation with neoprene seals, the search for improvements through other joint sealing products and procedures continued. An agreement was made with Phoenix, North America, Inc., to provide and install preformed Ethylene Propylene Diene Monomer (EPDM) compression joint seals. The research site was a 600 ft (183 m) test section of northbound I-29 in Pottawattamie County, Iowa. Seal installation was done August 20, 1992. Seal performance has been good over the past seven years and the seals are still showing no significant signs of decreasing performance.