9 resultados para plant cover
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
If you have ever flown in an airplane over Iowa, you would see that our woodlands are scattered along the rivers and streams and areas too steep to farm. You would also see a green carpet of trees within out cities and towns. Did you know the 90% of the over 2.7 million acres of forest in Iowa is owned by over 138,000 different private owners? Or that 30% of the land cover in a typical Iowa community if covered by trees? Trees are vital for the protection of our drinking water supply, critical for wildlife habitat, and help sustain employment of over 7,000 Iowans in the wood products industry. This booklet "20 Native trees to Plant" will help you gain a greater knowledge about Iowa's trees and forests. Learn about and enjoy Iowa's trees. Consider ways that you can improve our environment by planting and caring for Iowa's trees and forests.
Resumo:
Other Audit Report - Utilities
Resumo:
Land Cover of Iowa in 1999
Resumo:
As a result of higher seed prices, improved planters and weed management programs, soybean growers are more aware of the importance of seeding rates and optimal plant populations at harvest. A harvest population of approximately 100,000 uniformly distributed plants per acre will maximize economic return in Iowa regardless of row spacing. There appears to be no economic advantage to harvest populations greater than, or less than, 100,000 plants per acre. Economics, however, should be considered carefully when striving for higher harvest populations since seed is expensive. Timely management, such as weed management, is more critical at low plant populations.
Resumo:
Planting soybeans in rows narrower than 30 inches can improve yield potential. Most Midwest research documents that narrow rows (less than 30 inches) yield greater than wide rows (30 inches or greater). On average in Iowa a 4.5 bu./acre yield increase can be expected using 15-inch row spacing, compared to 30-inch row spacing. These data have been fairly consistent for the past 20 years.
Resumo:
As a result of higher seed prices, improved planters and weed management programs, soybean growers are more aware of the importance of seeding rates and optimal plant populations at harvest. A harvest population of approximately 100,000 uniformly distributed plants per acre will maximize economic return in Iowa regardless of row spacing. There appears to be no economic advantage to harvest populations greater than, or less than, 100,000 plants per acre. Economics, however, should be considered carefully when striving for higher harvest populations since seed is expensive. Timely management, such as weed management, is more critical at low plant populations.
Resumo:
According to prevailing ecological theory one would expect the most stable vegetation on sites which are least disturbed (Odum 1971). According to theory one would also expect the most diversity of species on undisturbed sites (Odum 1971). This stable and diverse community would be produced over a period of many years through a process of plant succession where annual herbs are replaced by perennial herbs and finally woody plants would come to dominate and perpetuate the community. Another ecological theory holds that the complexity (structure and species diversity) of a plant community is dependent upon the amount of disturbance to which it is subjected (Woodwell, 1970). According to this theory the normal succession of a plant community through its various stages may be arrested at some point depending upon the nature and severity of the disturbance. In applying these theories to roadside vegetation it becomes apparent that mass herbicide spraying and extensive mowing of roadsides has produced a relatively simple and unstable vegetation. It follows that if disturbances were reduced not only would the roadside plant community increase in stability but maintenance costs and energy usage would be reduced. In this study we have investigated several aspects of reduced disturbances on roadside vegetation. Research has centered on the effectiveness of spot spraying techniques on noxious weed control, establishment of native grass cover where ditch cleaning and other disturbance has left the bare soil exposed and the response of roadside vegetation when released from annual mass spraying.
Resumo:
This publication is a guide to understanding the Iowa Department of Transportation’s roadside management programs. It offers descriptions of various landscape designs or planting styles used within or adjacent to Iowa’s highway rights-of-way, as well as various plant profiles. In addition, this guide will help you learn more about the value of plants and their contribution to our environment and society. This publication is written for persons having little or no formal training in botany, and technical terminology has been kept to the minimum necessary to maintain standards of accuracy and conciseness in the descriptions. Plants are known by common names and botanical names. Most people prefer to use common names because they are easier to spell and say. Both have been used in this publication. Botanical names are taken from Latin, Greek or “Latinized” words of other languages. Each plant species has a unique botanical name, consisting of the genus, followed by the species. Some botanical names contain additional words after the species name to designate cultivars or subspecies. Plant species are grouped into families by flower structure. Family names are Latin, so the associated common family names are included in parenthesis. Sources of information for this publication are not cited within the text to save space, avoid repetition and make it more readable. However, all references used are included in the bibliography at the end of this publication.
Resumo:
This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.