12 resultados para piezoelectricity,energy harvesting,SSHI,micropower,power conversion
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Wind power is the fastest growing source of energy in the nation. New installations have expanded total U.S. generating capacity by 45 percent and injected over $9 billion in new investments into the economy in 2007. These new wind projects accounted for about 30 percent of the entire new power-producing capacity added nationally in 2007. According to our figures at the American Wind Energy Association, installed wind power capacity in the U.S. is now over 16,800 megawatts, and the future looks bright. With every wind turbine that goes up, America’s dependence on fossil fuels for power generation goes down. Wind energy represents a tremendous opportunity to use a non-polluting, inexhaustible source to meet our electric power needs.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
A newly completed study commissioned by the Iowa Office of Energy Independence shows increased jobs, tax revenue and economic activity as a result of Iowa Power Fund projects. The analysis is divided into two parts. Part I assesses the specific impacts of projects that have been funded directly. Part II offers an analysis of the long term impacts when projects are successfully replicated.
Resumo:
We provide estimates of the costs associated with inducing substantial conversion of land from production of traditional crops to switchgrass. Higher traditional crop prices due to increased demand for corn from the ethanol industry has increased the relative advantage that row crops have over switchgrass. Results indicate that farmers will convert to switchgrass production only with significant conversion subsidies. To examine potential environmental consequences of conversion, we investigate three stylized landscape usage scenarios, one with an entire conversion of a watershed to switchgrass production, a second with the entire watershed planted to continuous corn under a 50% removal rate of the biomass, and a third scenario that places switchgrass on the most erodible land in the watershed and places continuous corn on the least erodible. For each of these illustrative scenarios, the watershed-scale Soil and Water Assessment Tool (SWAT) hydrological model (Arnold et al., 1998; Arnold and Forher, 2005) is used to evaluate the effect of these landscape uses on sediment and nutrient loadings in the Maquoketa Watershed in eastern Iowa.
Resumo:
Amana Farms is using an anaerobic digestion, which is a two-stage digester that converts manure and other organic wastes into three valuable by-products: 1) Biogas – to fuel an engine/generator set to create electricity; 2) Biosolids - used as a livestock bedding material or as a soil amendment; 3) Liquid stream - will be applied as a low-odor fertilizer to growing crops. (see Business Plan appendix H) The methane biogas will be collected from the two stages of the anaerobic digestion vessel and used for fuel in the combined heat and power engine/generator sets. The engine/generator sets are natural gasfueled reciprocating engines modified to burn biogas. The electricity produced by the engine/generator sets will be used to offset on-farm power consumption and the excess power will be sold directly to Amana Society Service Company as a source of green power. The waste heat, in the form of hot water, will be collected from both the engine jacket liquid cooling system and from the engine exhaust (air) system. Approximately 30 to 60% of this waste heat will be used to heat the digester. The remaining waste heat will be used to heat other farm buildings and may provide heat for future use for drying corn or biosolids. The digester effluent will be pumped from the effluent pit at the end of the anaerobic digestion vessel to a manure solids separator. The mechanical manure separator will separate the effluent digested waste stream into solid and liquid fractions. The solids will be dewatered to approximately a 35% solid material. Some of the separated solids will be used by the farm for a livestock bedding replacement. The remaining separated solids may be sold to other farms for livestock bedding purposes or sold to after-markets, such as nurseries and composters for soil amendment material. The liquid from the manure separator, now with the majority of the large solids removed, will be pumped into the farm’s storage lagoon. A significant advantage of the effluent from the anaerobic digestion treatment process is that the viscosity of the effluent is such that the liquid effluent can now be pumped through an irrigation nozzle for field spreading.
Resumo:
Climate refers to the long-term course or condition of weather, usually over a time scale of decades and longer. It has been documented that our global climate is changing (IPCC 2007, Copenhagen Diagnosis 2009), and Iowa is no exception. In Iowa, statistically significant changes in our precipitation, streamflow, nighttime minimum temperatures, winter average temperatures, and dewpoint humidity readings have occurred during the past few decades. Iowans are already living with warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual streamflows, and more frequent severe precipitation events (Fig. 1-1) than were prevalent during the past 50 years. Some of the impacts of these changes could be construed as positive, and some are negative, particularly the tendency for greater precipitation events and flooding. In the near-term, we may expect these trends to continue as long as climate change is prolonged and exacerbated by increasing greenhouse gas emissions globally from the use of fossil fuels and fertilizers, the clearing of land, and agricultural and industrial emissions. This report documents the impacts of changing climate on Iowa during the past 50 years. It seeks to answer the question, “What are the impacts of climate change in Iowa that have been observed already?” And, “What are the effects on public health, our flora and fauna, agriculture, and the general economy of Iowa?”
Resumo:
The 2008 Biobased Industry Outlook Conference was held September 7-10 on the Iowa State University campus. Over 750 people attended the plenary sessions on the morning of September 8th; 580 people registered for the full conference. Sponsorships: $92,500 in sponsorships in addition to the IPF was secured for the conference (considered “match” to the IPF grant). Including the $11,250 IPF sponsorship ($12,500 minus overhead charges of $1,250), the total amount contributed for conference sponsorships was $103,750. A list of sponsors and the amount of sponsorship is listed in Appendix A. Sponsorship funds received from the Iowa Power Fund were used for supplies and materials. Please see Appendix B which documents the transfer of IPF grant funds internally at ISU and their use.
Resumo:
In its 2007 Session, the Iowa General Assembly passed, and Governor Culver signed into law, extensive and far-reaching state energy policy legislation. This legislation created the Iowa Office of Energy Independence and the Iowa Power Fund. It also required a report to be issued each year detailing: • The historical use and distribution of energy in Iowa. • The growth rate of energy consumption in Iowa, including rates of growth for each energy source. • A projection of Iowa’s energy needs through the year 2025 at a minimum. • The impact of meeting Iowa’s energy needs on the economy of the state, including the impact of energy production and use on greenhouse gas emissions. • An evaluation of renewable energy sources, including the current and future technological potential for such sources. Much of the energy information for this report has been derived from the on-line resources of the Energy Information Administration (EIA) of the United States Department of Energy (USDOE). The EIA provides policy-independent data, forecasts and analyses on energy production, stored supplies, consumption and prices. For complete, economy-wide information, the most recent data available is for the year 2008. For some energy sectors, more current data is available from EIA and other sources and, when available, such information has been included in this report.
Resumo:
A newly completed study commissioned by the Iowa Office of Energy Independence shows increased jobs, tax revenue and economic activity as a result of Iowa Power Fund projects. The analysis is divided into two parts. Part I assesses the specific impacts of projects that have been funded directly. Part II offers an analysis of the long term impacts when projects are successfully replicated.
Resumo:
The Office of Energy Independence (Office) is the state agency responsible for setting the strategic direction, directing policy, conducting energy related outreach and administering programs that optimize energy production and efficiency to secure Iowa’s clean energy future. The Office performed its duties as set forth in Iowa Code 469.3(2), managed the Iowa Power Fund and federal U.S. Department of Energy (DOE) grants funded through the American Recovery and Reinvestment Act (ARRA), as well as an annual federal appropriation that supports the Office’s operational costs. As part of the national network for energy security, the Office is responsible for ensuring state emer- gency preparedness and quick recovery and restoration from any energy supply disruptions.
Resumo:
The Iowa Power Fund and the Office of Energy Independence are charged with the responsibility of creating an economically viable and sound energy future for Iowa through energy independence. This vision can only be achieved if a majority, if not all Iowans, are united in this cause and actively participate in it
Resumo:
ISU’s proposed research will (1) develop methods for designing clean and efficient burners for low‐Btu producer gas and medium‐Btu syngas, (2) develop catalysts and flow reactors to produce ethanol from medium‐Btu synthesis gas, and (3) upgrade the BECON gasifier system to enable medium‐Btu syngas production and greatly enhanced capabilities for detailed gas analysis needed by both (1) and (2). This project addresses core development needs to enable grain ethanol industry reduce its natural gas demand and ultimately transition to cellulosic ethanol production.