7 resultados para physical and chemical factors
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
study of channel catfish in the Mississippi River to determine differences in year class abundance and causative factors
Resumo:
The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: (I) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher: (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector. This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms: and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.
Resumo:
The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: ( I ) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher: (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector. This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms: and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.
Resumo:
Iowa Highway Commission Project HR-33, "Characteristics of Chemically Treated Roadway Surfaces", was investigated at the Iowa Engineering Experiment Station under Project 375-S. The purpose of the project as originally proposed was to study the physical and chemical characteristics of chemically treated roadway surfaces. All chemical treatments were to be included, but only sodium chloride and calcium chloride treated roadways were investigated. The uses of other types of chemical treatment were not discovered until recently, notably spent sulfite liquor and a commercial additive. Costs of stabilized secondary roads in Hamilton County averaged $4300.00 per mile even though remanent soil-aggregate material was used. The cost of similar roads in Franklin County was $4400.00 per mile. The Franklin County road surfaces were constructed entirely from materials that were hauled to the road site. Costs in Butler County were a little over $3000.00 per mile some eight years ago. Chemical investigations indicate that calcium chloride and sodium chloride are lost through leaching. Approximately 95 percent of the sodium chloride appears to have been lost, and nearly 65 percent of the calcium chloride has disappeared. The latter value may be much in error since surface dressings of calcium chloride are commonly used and have not been taken into account. Clay contents of the soil-aggregate-chemical stabilized roads range from about 6 to ll percent, averaging 8 or 9 percent. The thicknesses of stabilized mats are usually 2 to 4 inches, with in-place densities ranging from 130 to 145 pcf. Generally the densities found in sodium chloride stabilized roads were slightly higher than those found in the calcium chloride stabilized roads.
Resumo:
When mixing asphalt in thin film and at high temperatures, as in the production of asphalt concrete, it has been shown that asphalt will harden due essentially to two factors: (1) losses of volatiles and (2) oxidation. The degree of hardening as expressed by percent loss in penetration varied from as low as 7% to about 57% depending on mixing temperatures, aggregate types, gradation, asphalt content, penetration and other characteristics of asphalts used. Methods used to predict hardening during mixing include loss on heat and thin film oven tests, with the latter showing better correlation with the field findings. However, information on other physical and chemical changes that may occur as a result of mixing in the production of hot-mix asphaltic concrete is limited, The purpose of this research project was to ascertain the changes of asphalt cement properties, both physical and chemical, during mixing operation and to determine whether one or more of the several tests of asphalt cements were critical enough to indicate these changes.
Resumo:
The major objective of this research project is to investigate the chemistry and morphology of Portland cement concrete pavements in Iowa. The integrity of the various pavements is being ascertained based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Work is also being done on quantifying the air content of the concrete using image analysis techniques since this often appears to be directly related to the sulfate minerals that are commonly observed in the pavement cores.
Resumo:
This bulletin is a compilation of the reports on completed research done for the Iowa State Highway Research Board Project HR-1, "The Loess and Glacial Till Materials of Iowa; an Investigation of Their Physical and Chemical Properties and Techniques for Processing Them to Increase Their All-Weather Stability for Road Construction.” The research, started in 1950, was done by the Iowa Engineering Experiment Station under its project 283-S. The project was supported by funds from the Iowa State Highway Commission.