13 resultados para phosphorous fertilizer

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This analysis uses the 2011 FAPRI-CARD (Food and Agricultural Policy Research Institute–Center for Agricultural and Rural Development) baseline to evaluate the impact of four alternative scenarios on U.S. and world agricultural markets, as well as on world fertilizer use and world agricultural greenhouse gas emissions. A key assumption in the 2011 baseline is that ethanol support policies disappear in 2012. The baseline also assumes that existing biofuel mandates remain in place and are binding. Two of the scenarios are adverse supply shocks, the first being a 10% increase in the price of nitrogen fertilizer in the United States, and the second, a reversion of cropland into forestland. The third scenario examines how lower energy prices would impact world agriculture. The fourth scenario reintroduces biofuel tax credits and duties. Given that the baseline excludes these policies, the fourth scenario is an attempt to understand the impact of these policies under the market conditions that prevail in early 2011. A key to understanding the results of this fourth scenario is that in the absence of tax credits and duties, the mandate drives biofuel use. Therefore, when the tax credits and duties are reintroduced, the impacts are relatively small. In general, the results show that the entire international commodity market system is remarkably robust with respect to policy changes in one country or in one sector. The policy implication is that domestic policy changes implemented by a large agricultural producer like the United States can have fairly significant impacts on the aggregate world commodity markets. A second point that emerges from the results is that the law of unintended consequences is at work in world agriculture. For example, a U.S. nitrogen tax that might presumably be motivated for environmental benefit results in an increase in world greenhouse gas emissions. A similar situation occurs in the afforestation scenario in which crop production shifts from high-yielding land in the United States to low-yielding land and probably native vegetation in the rest of the world, resulting in an unintended increase in global greenhouse gas emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute the fertilizer use in corn, cotton, soybeans, and rapeseed in the period from 1990 to 2010 for a set of selected countries. In each case, we present the consumption of nitrogen, phosphate, and potash by crop and by year, reporting both the fertilizer application rates (in kilograms per hectare) and the fertilizer consumption (in thousand metric tonnes). We allocate a country’s total nutrient consumption in a given year among competing crops based on publicly available statistics. The resulting allocation of fertilizer among crops is a function of the country’s nutrients total use, the country’s cropped areas, crop world prices, and crop- and country-specific fertilizer application rates for some years. In this report we show results on fertilizer consumption by crop for the top fertilizer consuming countries, and a downloadable MS Excel file “FertilizerDemandByCropData.xls” shows the complete set of results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen (N) is typically one of the largest corn fertilization expenses. Nitrogen application is critical because it signifi cantly improves corn yield in many crop rotations. When choosing N rates, producers need to carefully consider both achieving most profi table economic return and advancing environmental stewardship. In 2004, university agronomists from the Corn Belt states began discussions regarding N rate use for corn production. The reasons for the discussions centered on apparent differences in methods for determining N rates across states, misperceptions regarding N rate guidelines, and concerns about application rates as corn yields have climbed to historic levels. An outcome of those discussions was an effort with the objectives to: ▪ develop N rate guidelines that could be applicable on a regional basis and ▪ identify the most profi table fertilizer N rates for corn production across the Corn Belt. This publication provides an overview of corn N fertilization in regard to rate of application, investigates concepts for determining economic application rates, and describes a suggested regional approach for developing corn N rate guidelines directly from recent research data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iowa agriculture depends on anhydrous ammonia as a low-cost form of nitrogen fertilizer on 61 percent of Iowa’s 12.4 million acres of corn. Now we find a threat to that source of nutrient—the theft of anhydrous ammonia for use in making a powerful, illegal narcotic called methamphetamine. Naturally, the fertilizer industry is outraged by the illegal and illicit use of our products. We want to play a role in preventing abuse in the future. By raising awareness, knowing how to respond and using the Meth Inhibitor, fertilizer dealers can assist law enforcement in combating this illicit use of a product important to Iowa farmers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Farms to Fuel project will demonstrate technology to produce alternative renewable energy by combining cattle manure with organic industrial waste products in an anaerobic digester. The digester produces methane gas which fires an engine set to generate base load electricity. This would create environmental benefits by turning crop, livestock, and industrial waste into renewable energy in a sustainable and profitable way. Other benefits of the project include the production of a fertilizer that is more readily applicable to crops than in its raw form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amana Farms is using an anaerobic digestion, which is a two-stage digester that converts manure and other organic wastes into three valuable by-products: 1) Biogas – to fuel an engine/generator set to create electricity; 2) Biosolids - used as a livestock bedding material or as a soil amendment; 3) Liquid stream - will be applied as a low-odor fertilizer to growing crops. (see Business Plan appendix H) The methane biogas will be collected from the two stages of the anaerobic digestion vessel and used for fuel in the combined heat and power engine/generator sets. The engine/generator sets are natural gasfueled reciprocating engines modified to burn biogas. The electricity produced by the engine/generator sets will be used to offset on-farm power consumption and the excess power will be sold directly to Amana Society Service Company as a source of green power. The waste heat, in the form of hot water, will be collected from both the engine jacket liquid cooling system and from the engine exhaust (air) system. Approximately 30 to 60% of this waste heat will be used to heat the digester. The remaining waste heat will be used to heat other farm buildings and may provide heat for future use for drying corn or biosolids. The digester effluent will be pumped from the effluent pit at the end of the anaerobic digestion vessel to a manure solids separator. The mechanical manure separator will separate the effluent digested waste stream into solid and liquid fractions. The solids will be dewatered to approximately a 35% solid material. Some of the separated solids will be used by the farm for a livestock bedding replacement. The remaining separated solids may be sold to other farms for livestock bedding purposes or sold to after-markets, such as nurseries and composters for soil amendment material. The liquid from the manure separator, now with the majority of the large solids removed, will be pumped into the farm’s storage lagoon. A significant advantage of the effluent from the anaerobic digestion treatment process is that the viscosity of the effluent is such that the liquid effluent can now be pumped through an irrigation nozzle for field spreading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little River Lake watershed is a 13,305 acre subwatershed of Little River. The 788 acre lake was listed as a 303d impaired water body in 2008 due to elevated turbidity and algae levels. The Decatur SWCD has prioritized water quality protection efforts within the Little River Lake watershed because 1) portions of this watershed has been identified as the primary contributor of sediment and nutrients to Little River Lake, which provides an essential source of drinking water for Decatur County and the Southern Iowa Rural Water Association; 2) the watershed provides exemplary education and project interpretation opportunities due to its proximity to Little River Lake Recreation Area, and 3) by using targeted and proven soil conservation practices to address water quality deficiencies the probability of successfully attenuating soil erosion and ameliorating water quality impairments is enhanced. The specific goals of this proposal are to: 1. reduce annual sediment, and phosphorous delivery to the lake by 11,280 tons and 14,664 lbs., respectively, via applications of conservation practices on targeted agricultural land; 2. delist the lake as an EPA 303d impaired water body via water quality enhancement; 3. obtain a “Full Support” status for the lake’s aquatic life and recreational use; 4. reduce potable water treatment costs (minimum 50% cost reduction) associated with high suspended solid levels; and 5. restore a viable sport-fish population, thereby bolstering tourism and the economy. To achieve timely project implementation the Decatur SWCD has cooperated with the IDNR Watershed Improvement Section, Fisheries Bureau, and IDALS-DSC to assess extant water quality and watershed conditions, coalesced a diverse team of committed partners and secured matching funding from multiple sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bear Creek is an impaired warm water fishery designated as class B(LR) by the Iowa DNR and is on 303 impaired waters list for fish kills and ammonia. Bear Creek is located in eastern Delaware County. This project is designed to improve the water quality of Bear Creek by educating the landowners, operators and watershed community about the importance of this water resource. The goal of the Bear Creek Watershed Project is to improve the water quality of Bear Creek by reducing the amounts of ammoniated manure discharge, fecal coliform bacteria, sediment, nitrogen, and phosphorous. The Bear Creek Watershed Project has been a watershed project since July 2004, first as a Demo project FY 2004-2005 and then full time WSPF/319 project FY06-09. Fish kills have not occurred in 2008-2009. Sediment delivery has decreased in the Bear Creek Watershed by 5,328 tons per year. The objectives of this watershed project will be to improve Livestock Waste Storage, to improve Livestock Waste Usage, to decrease Sediment Losses, and to improve Education & Area Outreach. This project will install 2 manure storage structures (EQIP/project funded), 19 ac of CRP waterways, 12 ac of project waterways, 17 ac of CRP filter strips along stream, 12 water and sediment control basins, 18,000 ft of terraces, 350 ac of new notill planting, and 3,700 ft of streambank protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Competine Creek watershed is a 24,956 acre sub-watershed of Cedar Creek. The creek traverses portions of three counties, slicing through rich and highly productive Southern lowa Drift Plain soils. The watershed is suffering from excessive sediment delivery and frequent flash floods that have been exacerbated by recent high rainfall events. Assessment data reveals soil erosion estimated to be 38,435 tons/year and sediment delivery to the creek at 15,847 tons/year. The Competine Creek Partnership Project is seeking WIRB funds to merge with IDALS-DSC funds and local funds, all targeted for structural Best Management Practices (BMPs) within the 2,760 acres of High Priority Areas (HPAs) identified by the assessment process. The BMPs will include grade stabilization structures, water and sediment basins, tile-outlet terraces, CRP, and urban storm water conservation practices. In addition, Iowa State University Extension-Iowa Learning Farm is investing in the project by facilitating a crop sampling program utilizing fall stalk nitrate, phosphorous index, and soil conditioning index testing. These tests will be used by producers as measures of performance to refine nutrient and soil loss management and to determine effective alternatives to reduce sediment and nutrient delivery to Competine Creek.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Headwaters North Fork Maquoketa River Project encompasses the Hewitt Creek, Bear Creek, and the Coffee Creek-North Fork Maquoketa subwatersheds. These three.sub-watersheds have intensive livestock agriculture production with manures applied generously on the landscape. Approximately 85% of the watershed area is cropland. Although livestock operations are not permitted to discharge waste directly into surface waters, the mishandling and over-application of animal waste and fertilizer have impacted water quality. Each of the subwatersheds has a strong locally led effort, concentrating significant efforts on monitoring, education, and conservation practice adoption. The original MRBI application was accepted by USDA with funding being extended to producers through FY14. A large component of this effort was the IJOBS funds awarded by IDALS to support the Project Coordinator for the first two years of this project. As previous funding for the support of the Project Coordinator has been exhausted, the local partners identified WIRB as a potential replacement funding source. The goal of the existing MRBI effort, in being consistent with this WIRB application, will help landowners and operators in the three selected watersheds voluntarily implement conservation systems that reduce nutrient loss; protect, restore, and enhance wetlands; maintain agricultural productivity; improve wildlife habitat; and achieve other objectives, such as flood reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A targeted approach is being used in the Iowa Great Lakes Watershed with a keystone project featured within this project application in the heavily urbanized Center Lake Watershed. As identified in the Iowa Great Lakes Watershed Management Plan, urban runoff is the only remaining watershed concern in the Center Lake Watershed as the map in the attachments clearly shows. Fully one third of the watershed concerns of Center Lake will be treated through the installation of 7 keystone urban practices and will remove 63 pounds of phosphorous from entering the lake annually. Due to the interconnectedness of the Iowa Great Lakes (IGL), the watershed has been broken down into sub units called Resource Management Areas (RMA's) for priority practice implementation. This project will mesh with the existing Iowa Great Lakes Watershed Management Plan by reducing pollutant loads from the highest priority RMA's which are resulting in impaired water bodies. The majority of the funding needed for the specific practices specified in this proposal has already been secured through the Iowa DNR Section 319 and Lake Restoration Programs, The Water Quality Commission and the City of Spirit Lake. This funding request will simply bring the overall cost of these keystone practices into the range of affordability for the committed funders and the City of Spirit Lake