2 resultados para pelvic floor function

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to an equipment malfunction, too much sand was used in the concrete on the bridge floor placed on August 9, 1994, in Washington County, Project No. BRF-22-2(36)38-92. Freeze-thaw durability testing of cores taken from the concrete in question and the other two concretes not in question was performed. The experimental results indicate that the concrete in question is considered at least as durable and resistant to freeze-thaw damage as the concretes which are not in question. The concrete in question can be expected to function properly for the regular service life of the bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this research project are: (1) To determine the feasibility of proportioning, mixing, placing and finishing a dense portland cement concrete in a bridge floor using conventional mixing, placing and finishing equipment. (2) To determine the economics, longevity, maintenance performance and protective qualities of a dense portland cement concrete bridge floor when using a high rangewater reducing admixture. The purpose of a high range water reducing admixture is to produce a dense, high quality concrete at a low water-cement ratio witj adequate workability. A low water-cement ratio contributes greatly to increased strength. The normal 7 day strength of untreated concrete would be expected i n 3 days using a superplasticizer. A dense concrete also has the desirable properties of excellent durability and reduced permeability. It is felt that a higher quality, denser, higher strength portland cement concrete can be produced and placed, using conventional equipment, by the addition of a high range water reducing admixture. Such a dense concrete, w i t h a water/cement ratio of approximately 0.30 to 0.35, would be expected to be much less permeable and thus retard the intrusion of chloride. With care and attention given to obtaining the design cover over steel (2% inches clear), it i s hoped that protection for the design life of the structure will be obtained. Evaluation of this experimental concrete bridge floor included chloride content and delamination testing of the concrete floor five years after construction. A comparitive evaluation o f a control section o f concrete without the water reducing admixture was conducted. Other items o f comparison include workability during construction, strength, density, water-cement ratio and chloride penetration.