3 resultados para peak load management

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The bond strength of reinforcing bars is a complex interaction between localized deformations, chemical adhesion, and other factors. Coating of reinforcing bars, although sometimes debated, has been commonly found to be an effective way to delay the initiation of corrosion in reinforced concrete systems. For many years, the standard practice has been to coat reinforcing steel with an epoxy coating, which provides a barrier between the steel and the corrosive elements of water, air, and chloride ions. Recently, there has been an industry-led effort to use galvanizing to provide the protective barrier commonly provided by traditional epoxy coatings. However, as with any new structural product, questions exist regarding both the structural performance and corrosion resistance of the system. In the fall of 2013, Buchanan County, Iowa constructed a demonstration bridge in which the steel girders and all internal reinforcing steel were galvanized. The work completed in this project sought to understand the structural performance of galvanized reinforcing steel as compared to epoxy-coated steel and to initiate a long-term corrosion monitoring program. This work consisted of a series of controlled laboratory tests and the installation of a corrosion monitoring system that can be observed for years in the future. The results of this work indicate there is no appreciable difference between the bond strength of epoxy-coated reinforcing steel and galvanized reinforcing steel. Although some differences were observed, no notable difference in either peak load, slip, or failure mode could be identified. Additionally, a long-term monitoring system was installed in this Buchanan County bridge and, to date, no corrosion activity has been identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Iowa Department of Transportation (IaDOT) was interested in investigating the use of epoxy adhesive anchorages for the attachment of posts used in the BR27C combination bridge rail system. Alternative anchorage concepts were developed using a modified version of the ACI 318-11 procedures for embedded anchor design. Four design concepts were developed for review by IaDOT, including: (1) a four-bolt square anchorage, (2) a four-bolt spread anchorage, (3) a twobolt centered anchorage, and (4) a two-bolt offset anchorage. IaDOT representatives selected the four-bolt spread anchorage and the two-bolt offset anchorage as the preferred designs for evaluation. In addition to these two proposed configurations, IaDOT also requested that the researchers evaluate a third option that had been previously installed on the US-20 bridge near Hardin, IA. The proposed alternative anchorages and the original cast-in-place anchorage for the BR27C combination bridge rail were evaluated through dynamic component testing. The test of the original cast-in-place anchorage was used a baseline for comparison with the alternative designs. Test no. IBP-1 of the original cast-in-place anchorage developed a peak load of 22.9 kips (101.9 kN) at a deflection of 1.5 in. (38 mm). All three of the tested alternative anchorages provided greater load capacity than the original cast-in-place design and were deemed acceptable surrogates. Of the three alternative designs, the two-bolt offset design was deemed the best option.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT (http://srg.cce.iastate.edu/lrfd/) is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.