3 resultados para outsourcing software testing
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Recent reports indicate that of the over 25,000 bridges in Iowa, slightly over 7,000 (29%) are either structurally deficient or functionally obsolete. While many of these bridges may be strengthened or rehabilitated, some simply need to be replaced. Before implementing one of these options, one should consider performing a diagnostic load test on the structure to more accurately assess its load carrying capacity. Frequently, diagnostic load tests reveal strength and serviceability characteristics that exceed the predicted codified parameters. Usually, codified parameters are very conservative in predicting lateral load distribution characteristics and the influence of other structural attributes. As a result, the predicted rating factors are typically conservative. In cases where theoretical calculations show a structural deficiency, it may be very beneficial to apply a "tool" that utilizes a more accurate theoretical model which incorporates field-test data. At a minimum, this approach results in more accurate load ratings and many times results in increased rating factors. Bridge Diagnostics, Inc. (BDI) developed hardware and software that are specially designed for performing bridge ratings based on data obtained from physical testing. To evaluate the BDI system, the research team performed diagnostic load tests on seven "typical" bridge structures: three steel-girder bridges with concrete decks, two concrete slab bridges, and two steel-girder bridges with timber decks. In addition, a steel-girder bridge with a concrete deck previously tested and modeled by BDI was investigated for model verification purposes. The tests were performed by attaching strain transducers on the bridges at critical locations to measure strains resulting from truck loading positioned at various locations on the bridge. The field test results were used to develop and validate analytical rating models. Based on the experimental and analytical results, it was determined that bridge tests could be conducted relatively easy, that accurate models could be generated with the BDI software, and that the load ratings, in general, were greater than the ratings, obtained using the codified LFD Method (according to AASHTO Standard Specifications for Highway Bridges).
Resumo:
Integral abutment bridges are constructed without an expansion joint in the superstructure of the bridge; therefore, the bridge girders, deck, abutment diaphragms, and abutments are monolithically constructed. The abutment piles in an integral abutment bridge are vertically orientated, and they are embedded into the pile cap. When this type of a bridge experiences thermal expansion or contraction, horizontal displacements are induced at the top of the abutment piles. The flexibility of the abutment piles eliminates the need to provide an expansion joint at the inside face to the abutments: Integral abutment bridge construction has been used in Iowa and other states for many years. This research is evaluating the performance of integral abutment bridges by investigating thermally induced displacements, strains, and temperatures in two Iowa bridges. Each bridge has a skewed alignment, contains five prestressed concrete girders that support a 30-ft wide roadway for three spans, and involves a water crossing. The bridges will be monitored for about two years. For each bridge, an instrumentation package includes measurement devices and hardware and software support systems. The measurement devices are displacement transducers, strain gages, and thermocouples. The hardware and software systems include a data-logger; multiplexers; directline telephone service and computer terminal modem; direct-line electrical power; lap-top computer; and an assortment of computer programs for monitoring, transmitting, and management of the data. Instrumentation has been installed on a bridge located in Guthrie County, and similar instrumentation is currently being installed on a bridge located in Story County. Preliminary test results for the bridge located in Guthrie County have revealed that temperature changes of the bridge deck and girders induce both longitudinal and transverse displacements of the abutments and significant flexural strains in the abutment piles. For an average temperature range of 73° F for the superstructure concrete in the bridge located in Guthrie County, the change in the bridge length was about 1 118 in. and the maximum, strong-axis, flexural-strain range for one of the abutment piles was about 400 micro-strains, which corresponds to a stress range of about 11,600 psi.
Resumo:
Current monitoring techniques for determination of compaction of earthwork and asphalt generally involve destructive testing of the materials following placement. Advances in sensor technologies show significant promise for obtaining necessary information through nondestructive and remote techniques. To develop a better understanding of suitable and potential technologies, this study was undertaken to conduct a synthesis review of nondestructive testing technologies and perform preliminary evaluations of selected technologies to better understand their application to testing of geomaterials (soil fill, aggregate base, asphalt, etc.). This research resulted in a synthesis of potential technologies for compaction monitoring with a strong emphasis on moisture sensing. Techniques were reviewed and selectively evaluated for their potential to improve field quality control operations. Activities included an extensive review of commercially available moisture sensors, literature review, and evaluation of selected technologies. The technologies investigated in this study were dielectric, nuclear, near infrared spectroscopy, seismic, electromagnetic induction, and thermal. The primary disadvantage of all the methods is the small sample volume measured. In addition, all the methods possessed some sensitivity to non-moisture factors that affected the accuracy of the results. As the measurement volume increases, local variances are averaged out providing better accuracy. Most dielectric methods with the exception of ground penetrating radar have a very small measurement volume and are highly sensitive to variations in density, porosity, etc.