4 resultados para ophthalmic optics and devices

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Iowa Traffic Control Devices and Pavement Markings: A Manual for Cities and Counties has been developed to provide state and local transportation agencies with suggestions and examples related to traffic control devices and pavement markings. Both rural and urban applications are included. The primary source of information for this document is the Manual on Uniform Traffic Control Devices (MUTCD), but many additional references have also been used. A complete listing of these is included in the appendix to this manual, and the reader is invited to consult these references for more in-depth information. The contents of this manual are not intended to represent standard practice or to imply legal requirements for installation in any particular manner. This document should be used as a supplement to the MUTCD, not as a substitute for any requirements contained therein. Engineering judgement should be applied to all decisions regarding traffic control devices and pavement markings. All references to the MUTCD in this manual apply to the millennium edition. The reader should be aware that many millennium revisions are allowed phase-in periods by the Federal Highway Administration (FHWA), ranging from two to ten years. These extended compliance periods should be considered when making decisions regarding traffic control devices and pavement markings. A new addition to the MUTCD, Part 5, “Traffic Control Devices for Low-Volume Roads,” also contains valuable recommendations for signing and marking low volume roads. This manual is presented in an easy to use threering format. Topics included in the complete guide manual may not apply to all jurisdictions and can easily be removed or modified as desired. Desired millennium MUTCD sections may be added for quick reference using the divider at the end of this document. Contents may also be available on CD-ROM in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transportation agencies in Iowa are responsible for a significant public investment with the installation and maintenance of traffic control devices and pavement markings. Included in this investment are thousands of signs and other inventory items, equipment, facilities, and staff. The proper application of traffic control devices and pavement markings is critical to public safety on streets and highways, and local governments have a prescribed responsibility under the Code of Iowa to properly manage these assets. This research report addresses current traffic control and pavement marking application, maintenance, and management in Iowa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Portable (roll-out) stop signs are used at school crossings in over 300 cities in Iowa. Their use conforms to the Code of Iowa, although it is not consistent with the provisions of the Manual on Uniform Traffic Control Devices adopted for nationwide application. A survey indicated that most users in Iowa believe that portable stop signs provide effective protection at school crossings, and favor their continued use. Other non-uniform signs that fold or rotate to display a STOP message only during certain hours are used at school crossings in over 60 cities in Iowa. Their use does not conform to either the Code of Iowa or the Manual on Uniform Traffic Control Devices. Users of these devices also tend to favor their continued use. A survey of other states indicated that use of temporary devices similar to those used in Iowa is not generally sanctioned. Some unsanctioned use apparently occurs in several states, however. A different type of portable stop sign for school crossings is authorized and widely used in one state. Portable stop signs similar to those used in Iowa are authorized in another state, although their use is quite limited. A few reports in the literature reviewed for this research discussed the use of portable stop signs. The authors of these reports uniformly recommended against the use of portable or temporary traffic control devices. Various reasons for this recommendation were given, although data to support the recommendation were not offered. As part of this research, field surveys were conducted at 54 locations in 33 communities where temporary stop control devices were in use at school crossings. Research personnel observed the obedience to stop control and measured the vehicular delay incurred. Stopped delay averaged 1.89 seconds/entering vehicle. Only 36.6 percent of the vehicles were observed to come to a complete stop at the study locations controlled by temporary stop control devices. However, this level of obedience does not differ from that observed at intersections controlled by permanent stop signs. Accident experience was compiled for 76 intersections in 33 communities in Iowa where temporary stop signs were used and, for comparative purposes, at 76 comparable intersections having other forms of control or operating without stop control. There were no significant differences in accident experience An economic analysis of vehicle operating costs, delay costs, and other costs indicated that temporary stop control generated costs only about 12 percent as great as permanent stop control for a street having a school crossing. Midblock pedestrian-actuated signals were shown to be cost effective in comparison with temporary stop signs under the conditions of use assumed. Such signals could be used effectively at a number of locations where temporary stop signs are being used. The results of this research do not provide a basis for recommending that use of portable stop signs be prohibited. However, erratic patterns of use of these devices and inadequate designs suggest that improved standards for their use are needed. Accordingly, nine recommendations are presented to enhance the efficiency of vehicular flow at school crossings, without causing a decline in the level of pedestrian protection being afforded.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.