11 resultados para online course materials
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Results are presented of triaxial testing of three crushed limestones to which either hydrated high-calcium lime, sodium chloride or calcium chloride had been added. Lime was added at rates of 1, 3, 10 and 16 percent, chlorides were added at 0.5 percent rate only. Speciments were compacted using vibratory compaction apparatus and were tested in triaxial compression using lateral pressures from 10 to 100 psi. Triaxial test results indicate that: (1) sodium chloride slightly decreased the angle of internal friction and increased cohesion, (2) calcium chloride slightly increased the angle of internal friction and decreased cohesion, and (3) lime had no appreciable effect on angle of internal friction but increased cohesion, decreased density and increased pore water pressure.
Resumo:
A highway base course may be defined as a layer of granular material which lies immediately below the wearing surface of a pavement and must possess high resistance to deformation in order to withstand pressures imposed by traffic. A material commonly used for base course construction is crushed limestone. Sources of limestone, acceptable for highway bases in the state of Iowa, occur almost entirely in the Pennsylvanian, Mississippian and Devonian strata. Performance records of the latter two have been quite good, while material from the Pennsylvanian stratum has failed on numerous occasions. The study reported herein is one segment of an extensive research program on compacted crushed limestone used for flexible highway base courses. The primary goals of the total study are: 1. Determination of a suitable and realistic laboratory method of compaction. 2. Effect of gradation, and mineralogy of the fines, on shearing strength. 3. Possible improvement of the shear strength with organic and inorganic chemical stabilization additives. Although the study reported herein deals primarily with the third goal, information gathered from work on the first two was required for this investigation. The primary goal of this study was the evaluation of various factors of stability of three crushed limestones when treated with small amounts of type I Portland cement. Investigation of the untreated materials has indicated that shear strength alone is not the controlling factor for stability of crushed stone bases. Thus the following observations were made in addition to shear strength parameters, to more adequately ascertain the stability of the cement treated materials: 1. Volume change during consolidation and shear testing. 2. Pore pressure during shear. The consolidated-undrained triaxial shear test was used for determination of the above factors.
Resumo:
This report concerns the stabilization of three crushed limestones by an ss-1 asphalt emulsion and an asphalt cement, 120-150 penetration. Stabilization is evaluated by marshall stability and triaxial shear tests. Test specimens were compacted by the marshall, standard proctor and vibratory methods. Stabilization is evaluated primarily by triaxial shear tests in which confining pressures of 0 to 80 psi were used. Data were obtained on the angle of internal friction, cohesion, volume change, pore water pressure and strain characteristics of the treated and untreated aggregates. The MOHR envelope, bureau of reclamation and modified stress path methods were used to determine shear strength parameters at failure. Several significant conclusions developed by the authors are as follows: (1) the values for effective angle of internal friction and effective cohesion were substantially independent of asphalt content, (2) straight line MOHR envelopes of failure were observed for all treated stones, (3) bituminous admixtures did little to improve volume change (deformation due to load) characteristics of the three crushed limestones, (4) with respect to pore water characteristics (pore pressures and suctions due to lateral loading), bituminous treatment notably improved only the bedford stone, and (5) at low lateral pressures bituminous treatments increased stability by limiting axial strain. This would reduce rutting of highway bases. At high lateral pressures treated stone was less stable than untreated stone.
Resumo:
The coefficients of relative strength (CORS) of base courses for use in the American association state highway officials (AASHO) interim guide for the design of flexible pavements are determined here. Based on (1) volumetric strain--axial strain relationships at minimum volume, and (2) effective stress ratio-cohesion relationships at maximum effective stress ratio, CORS were determined from the results of laboratory triaxial tests on both asphalt-treated and untreated aggregate base course materials. The researchers conclude that volumetric strain-axial strain at minimum volume appear to be appropriate parameters for determining CORS.
Resumo:
Several primary techniques have been developed through which soil aggregate road material properties may be improved. Such techniques basically involve a mechanism of creating a continuous matrix system of soil and/or aggregate particles, interlocked through the use of some additive such as portland cement, lime, or bituminous products. Details by which soils are stabilized vary greatly, but they are dependent on the type of stabilizing agent and nature of the soil, though the overall approach to stabilization has the common feature that improvement is achieved by some mechanism(s) forcing individual particles to adhere to one another. This process creates a more rigid material, most often capable of resisting the influx of water during freezing, loss of strength due to high moisture content and particle dispersion during thawing, and loss of strength due to migration of fines and/or water by capillarity and pumping. The study reported herein, took a new and relatively different approach to strengthening of soils, i.e., improvement of roadway soils and/or soil-aggregate materials by structural reinforcement with randomly oriented fibers. The purpose of the study was to conduct a laboratory and field investigation into the potential of improving (a) soil-aggregate surfaced and subgrade materials, including those that are frost-prone and/or highly moisture susceptible, and (b) localized base course materials, by uniting such materials through fibrous reinforcement. The envisioned objective of the project was the development of a simple construction technique(s) that could be (a) applied on a selective basis to specific areas having a history of poor performance, or (b) used for improvement of potential base materials prior to surfacing. Little background information on such purpose and objective was available. Though the envisioned process had similarities to fibrous reinforced concrete, and to fibrous reinforced resin composites, the process was devoid of a cementitious binder matrix and thus highly dependent on the cohesive and frictional interlocking processes of a soil and/or aggregate with the fibrous reinforcement; a condition not unlike the introduction of reinforcing bars into a concrete sand/aggregate mixture without benefit of portland cement. Thus the study was also directed to answering some fundamental questions: (1) would the technique work; (2) what type or types of fibers are effective; (3) are workable fibers commercially available; and (4) can such fibers be effectively incorporated with conventional construction equipment, and employed in practical field applications? The approach to obtaining answers to these questions, was guided by the philosophy that an understanding of basic fundamentals was essential to developing a body of engineering knowledge, that would serve as the basis for eventual development of design procedures with fibrous products for the applications previously noted.
Resumo:
This literature review serves as a foundation for a transportation and land use public policy education program for Iowa. The objective of the review is to summarize relevant research findings, to review the state of practice and policies of other state and local governments, and to explore land use trends both within the state of Iowa and the nation as a whole. Much of what we learned has been incorporated into the course materials. Because we expect to identify more useful sources throughout the project, this literature review should be considered a work in progress.
Resumo:
The purpose of Project ASSIST is to provide computer training to individuals who are blind, visually-impaired or deaf-blind. Our training materials address all levels of users, from beginners to advanced users. We have tutorials, keyboard guides and diagrams, and course packets. These materials can be used by individuals who want to learn popular computer programs on their own and by professional trainers for their organization's computer training program. We also offer instructor-led training through our ASSIST Online distance learning program.
Resumo:
The use of deicing salts in this part of the country is a necessity to remove ice from our bridges. The use of these salts has always been a problem since the chloride-ions penetrate the concrete and reach the steel and cause corrosion which eventually cause deterioration of both the steel and concrete. One method used to try to prevent this from happening was to apply a waterproof membrane to the concrete after it was placed. This method did help, but was not cost effective as the longevity of the membrane system was of relatively short duration. For this reason, this research project was initiated. After the original deck was placed a second layer of concrete about 1 1/2" thick was placed on top. Biennial evaluation of the decks included testing for delaminations and steel corrosion. Cores were also obtained for a chloride analysis. Testing and observations showed the two-layer bridge deck to be effective in preventing corrosion. Since the time this project was initiated, epoxy steel has been introduced and is a cost effective way to protect the steel from corrosion.
Resumo:
The problems of laboratory compaction procedures, the effect of gradation and mineralogy on shearing strength, and effect of stabilizing agents on shearing strength of granular base course mixes are discussed. For the materials tested, a suitable laboratory compaction procedure was developed which involves the use of a vibratory table to prepare triaxial test specimens. A computer program has been developed to facilitate the analysis of the test data of the effect of gradation and mineralogy on shearing strength of soils. The effects of the following materials have been selected for evaluation as stabilizing agents’ portland cement, sodium and calcium chloride, lime organic cationic waterproofer, and asphaltic materials.
Resumo:
The problems of laboratory compaction procedures, the effect of gradation and mineralogy on shearing strength, and effect of stabilizing agents on shearing strength of granular base course mixes are discussed. For the materials tested, a suitable laboratory compaction procedure was developed which involves the use of a vibratory table to prepare triaxial test specimens. A computer program has been developed to facilitate the analysis of the test data of the effect of gradation and mineralogy on shearing strength of soils. The effects of the following materials have been selected for evaluation as stabilizing agents’ portland cement, sodium and calcium chloride, lime organic cationic waterproofer, and asphaltic materials.
Factors Influencing Stability of Granular Base Course Mixes, Progress Report, HR-99, 1964 (November)
Resumo:
The problems of laboratory compaction procedures, the effect of gradation and mineralogy on shearing strength, and effect of stabilizing agents on shearing strength of granular base course mixes are discussed. For the materials tested, a suitable laboratory compaction procedure was developed which involves the use of a vibratory table to prepare triaxial test specimens. A computer program has been developed to facilitate the analysis of the test data of the effect of gradation and mineralogy on shearing strength of soils. The effects of the following materials have been selected for evaluation as stabilizing agents’ portland cement, sodium and calcium chloride, lime organic cationic waterproofer, and asphaltic materials.