19 resultados para neighboring nodes
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The value of providing paved shoulders adjacent to many higher volume roadways has been accepted in many states across the country. Iowa’s paved shoulder policy is considerably more conservative than neighboring states, particularly on rural four-lane and high-volume two-lane highways. The objectives of this research are to examine current design criteria for shoulders employed in Iowa and surrounding states, compare benefits and costs of alternative surface types and widths, and make recommendations based on this analysis for consideration in future design policies for primary highway in Iowa. The report finds that many safety and maintenance benefits would result from enhancing Iowa’s paved shoulder and rumble strip design practices for freeways, expressways, and Super 2 highway corridors. The benefits of paved shoulders include reduced numbers of certain crashes, higher capacity potentials, reduced maintenance, enhanced opportunities for other users such as bicyclists, and even possible increased longevity of pavements. Alternative paved shoulder policies and programming strategies are also offered, with detailed assessments of the benefits, costs, and budget impacts.
Resumo:
The spatial dimension of agricultural production is important when a communicable disease enters a region. This paper considers two sorts of biosecurity risk that producers can seek to protect against. One concerns the risk of spread: that neighboring producers do not take due care in protecting against being infected by a disease already in the region. In this case, producer efforts substitute with those of near neighbors. For representative spatial production structures, we characterize Nash equilibrium protection levels and show how spatial production structure matters. The other sort of risk concerns entry: that producers do not take due care in preventing the disease from entering the region. In this case, producer heterogeneity has subtle effects on welfare loss due to strategic behavior. Efforts by producers complement, suggesting that interfarm communication will help to redress the problem.
Resumo:
The Iowa Influenza Surveillance Network (IISN) tracks the overall activity, age groups impacted, outbreaks, type and strain, and severity of seasonal influenza. In the 2006-2007 season the network had more than 90 reporting sites that included physicians, clinics, hospitals, schools and long term care facilities (Appendix A). Other non-network reporters who contributed influenza data included medical clinics, hospitals, laboratories, local public health departments and neighboring state health departments. 010203040506070424548495051521234567891011121314MMWR weekNumber of cases2006-20072005-2006 The 2006-2007 influenza season in Iowa began earlier than any previously recorded data indicates, however, the season’s peak occurred much later in the season. In addition to early cases, this season was also unusual in that all three anticipated strains (AH1N1, AH3N2, and B) were reported by the first of December (Appendix B). The first laboratory-confirmed case in the 2005-2006 season was identified December 5, 2005; the first case for the 2006-2007 season was on November 2, 2006. The predominant strain for 2005-2006 was influenza AH3, but for 2006-2007 both influenza AH1 and B dominated influenza infections. However improvements in influenza specimen submission to the University Hygienic Laboratory may have also played a role in early detection and overall case detection. In summary, all influenza activity indicators show a peak between the MMWR weeks 5 and 9 (i.e. February 14- March 4). Children from five years to eight years of age were impacted more than other age groups. There were few influenza hospitalizations and fatalities in all age groups.
Resumo:
The public library movement f the early twentieth century was a national phenomenon, in which Iowa, along with its neighboring states, played a prominent role. In 1900, the Iowa Library Commission noted 48 free public libraries in the state. Today there are approximately 500, in towns ranging in size from Beaman, with a population of 222, the Des Moines, the state capitol. Iowans took enthusiastic advantage of Andre Carnegie's library philanthropy. In 1919, the Carnegie Corporation stopped funding libraries, 101 building has been erected in Iowa with Carnegie funds. Iowa place fourth among the states in terms of the number of communities obtaining Carnegie buildings, fifth in dollar appropriation per one hundred population and eighth in the total amount of money given by Carnegie to a state. These figures provide some measure by which interest in popular education among Iowans of the period can be judged. Today these early libraries, often the most distinctive public libraries in small or medium-sized towns, are physical foci in the townscapes of their communities and centers for a variety of educational and social activities. This survey was initiated by the Division of Historic Preservation in 1977. It grew out of the need to provide a framework within which libraries could be evaluated for National Register action. Several libraries (Des Moines, Grinnell, Eagle Grove, Carroll) has been recent candidates for the Register. There was every indication that enthusiasm for old library buildings was increasing and that more nominations could be expected in the future. The attrition rate among early library buildings was (and is) growing. Most libraries were built on limited budgets (Carnegie did not squander his money) and, despite the fact that future expansion was usually a conscious consideration in their design, they are rapidly becoming obsolete, due to expanding collections and changing styles of librarianship. If the protection of the threatened with demolition or alteration, action needed to be taken.
Resumo:
Recent reports have indicated that 23.5 percent of the nation's highway bridges are structurally deficient and 17.7 percent are functionally obsolete. A significant number of these bridges are on the Iowa county road system. The objective of the investigation described in this report was to identify, review and evaluate replacement bridges currently being used by various counties in Iowa and surrounding states. Iowa county engineers, county engineers in neighboring states as well as private manufacturers of bridge components, and regional precad prestressed concrete manufacturers were contacted to determine the most common replacement bridge types being used. Depending upon the findings of the review, possible improvements and/or new replacement bridge systems were to be proposed. A questionnaire was developed and sent to county engineers in Iowa and several counties in surrounding states. The results of the questionnaire showed that the most common replacement bridges in Iowa are the continuous concrete slab and prestressed concrete bridges. The primary reason these types are used is because of the availability of standard designs and because of their ease of maintenance. Counties seldom construct these types of bridges using their own labor forces, but instead contract the work. However, county forces are used to construct steel stringer, precast reinforced concrete and timber bridges. In general, 69 percent of the counties indicate an ability and willingness to use their own forces to design and construct relatively short span bridges (i.e., 40 A or less) provided the construction procedures are relatively simple. Several unique replacement bridge types used in Iowa that are constructed by county forces are documented and presented in this report. Sufficient details are provided to allow county engineers to determine if some of these bridges could be used to resolve some of their own replacement bridge problems. Where possible, cost information has also been provided. Each of these bridge types were evaluated for various criteria (e.g., cost effectiveness, conformance to AASI-ITO standards, range of sizes, etc.) by a panel of four Iowa county engineers; a summary of this critique is included. After evaluating the questionnaire responses from the counties and evaluating the various bridge replacement concepts currently in use, one new bridge replacement concept and one modification of a current Iowa county bridge replacement concept were developed. Both of these concepts would utilize county labor forces.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. In 2003 data will be collected on an estimated 14,700 new cancers among Iowa residents. A follow-up program tracks more than 97 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. Since 1973 the Iowa Registry has been funded by the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute (NCI). Iowa represents rural and midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.
Resumo:
Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. In 2004 data will be collected on an estimated 15,200 new cancers among Iowa residents. A follow-up program tracks more than 97 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. Since 1973 the Iowa Registry has been funded by the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute (NCI). Iowa represents rural and midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa is also providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.
Resumo:
Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 97 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2005 data will be collected on an estimated 15,800 new cancers among Iowa residents. Beginning with 2005 Cancer in Iowa, in situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded by the SEER Program of the National Cancer Institute. Iowa represents rural and midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.
Resumo:
Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2007 data will be collected on an estimated 15,700 new cancers among Iowa residents. In situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. In addition, the Registry receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.
Resumo:
Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for followup and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2008 data will be collected on an estimated 16,000 new cancers among Iowa residents. Noninvasive cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded primarily by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many National Cancer Institute publications. Beginning in 1990 a small percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.
Resumo:
Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2009 data will be collected on an estimated 16,000 new cancers among Iowa residents. In situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded primarily by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many National Cancer Institute publications. Beginning in 1990 between 5 and 10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.
Resumo:
Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of Epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2010 data will be collected on an estimated 16,400 new cancers among Iowa residents. In situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.
Resumo:
Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2011 data will be collected on an estimated 16,500 new cancers among Iowa residents. In situ cases of bladder cancer are included in the estimates for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Since 1973 the Iowa Registry has been funded by the SEER Program of the National Cancer Institute. Iowa represents rural and Midwestern populations and provides data included in many National Cancer Institute publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.
Resumo:
Cancer is a reportable disease as stated in the Iowa Administrative Code. Cancer data are collected by the State Health Registry of Iowa, located at The University of Iowa in the College of Public Health’s Department of epidemiology. The staff includes more than 50 people. Half of them, situated throughout the state, regularly visit hospitals, clinics, and medical laboratories in Iowa and neighboring states to collect cancer data. A follow-up program tracks more than 99 percent of the cancer survivors diagnosed since 1973. This program provides regular updates for follow-up and survival. The Registry maintains the confidentiality of the patients, physicians, and hospitals providing data. In 2012 data will be collected on a projected 17,500 new cancers among Iowa residents. In situ cases of bladder cancer are included in the projections for bladder cancer, to be in agreement with the definition of reportable cases of the Surveillance, Epidemiology, and End Results (SEER) Program of the NCI. Since 1973 the Iowa Registry has been funded by the SEER Program of the NCI. Iowa represents rural and Midwestern populations and provides data included in many NCI publications. Beginning in 1990 about 5-10 percent of the Registry’s annual operating budget has been provided by the state of Iowa. Beginning in 2003, the University of Iowa has also been providing cost-sharing funds. The Registry also receives funding through grants and contracts with university, state, and national researchers investigating cancer-related topics.