10 resultados para necking structures

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overarching goal of the proposed research was to evaluate the hydraulic performance of twenty two (22) fish-passage structures located in close proximity to bridges in western Iowa and within the HCA (Hungry Canyon Alliance) territory. Such structures include riprap weirs, fish ladders and grouted ripraps. The hydraulic performance of the aforementioned structures was evaluated via detailed field tests for a range of flow conditions relevant to fish migration through bridge waterways in different streams in western Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stream degradation due to steep stream gradients and large deposits of loess soil is a serious problem in western Iowa. One solution to this problem is to construct grade stabilization structures at critical points along the length of the stream. Iowa Highway Research Board project HR-236, "Pottawattamie County Evaluation of Control Structures for Stabilizing Degrading Stream Channels", was initiated in order to study the effectiveness of such structures in preventing stream degradation. This report describes the construction and 4-year performance of a gabion drop structure constructed along Keg Creek during the winter of 1982-83.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This metric short course was developed in response to a request from the Office of Bridges and Structures to assist in the training of engineers in the use of metric units of measure which will be required in all highway designs and construction after September 30, 1996 (CFR Presidential Executive Order No. 12770). The course notes which are contained in this report, were developed for a half-day course. The course contains a brief review of metrication in the U.S., metric units, prefixes, symbols, basic conversions, etc. The unique part of the course is that it presents several typical bridge calculations (such as capacity of reinforced concrete compression members, strength of pile caps, etc.) worked two ways: inch-pound units throughout with end conversion to metric and initial hard conversion to metric with metric units throughout. Comparisons of partial results and final results (obtained by working the problems the two ways) are made for each of the example problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blowing and drifting snow has been a problem for the highway maintenance engineer virtually since the inception of the automobile. In the early days, highway engineers were limited in their capability to design and construct drift free roadway cross sections, and the driving public tolerated the delays associated with snow storms. Modern technology, however, has long since provided the design expertise, financial resources, and construction capability for creating relatively snowdrift free highways, and the driver today has come to expect a highway facility that is free of snowdrifts, and if drifts develop they expect highway maintenance crews to open the highway within a short time. Highway administrators have responded to this charge for better control of snowdrifting. Modern highway designs in general provide an aerodynamic cross section that inhibits the deposition of snow on the roadway insofar as it is economically feasible to do so.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the turn of the century, tributaries to the Missouri River in western Iowa have entrenched their channels to as much as six times their original depth. This channel degradation is accompanied by widening as the channel side slopes become unstable and landslides occur. The deepening and widening of these streams have endangered about 25% of the highway bridges in 13 counties [Lohnes et al. 1980]. Grade stabilization structures have been recommended as the most effective remedial measure for stream degradation [Brice et al., 1978]. In western Iowa, within the last seven years, reinforced concrete grade stabilization structures have cost between $300,000 and $1,200,000. Recognizing that the high cost of these structures may be prohibitive in many situations, the Iowa Department of Transportation (Iowa DOT) sponsored a study at Iowa State University (ISU) to find low-cost alternative structures. This was Phase I of the stream degradation study. Analytical and laboratory work led to the conclusion that alternative construction materials such as gabions and soil-cement might result in more economical structures [Lohnes et al. 1980]. The ISU study also recommended that six experimental structures be built and their performance evaluated. Phase II involved the design of the demonstration structures, and Phase III included monitoring and evaluating their performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory investigation was undertaken to determine the limiting model Reynolds number above which the scour behavior of rock protected structures can be reproduced in hydraulic models scaled according to the Froude criterion. A submerged jet was passed over an initially full scour pocket containing uniform glass spheres and the rate of scour was measured as a function of time. The dimensions of the scour pocket and jet and the particle diameters were varied as needed to maintain strict geometric similarity. For each of two different Froude numbers the Reynolds number was varied over a wide range. The normalized scour rate was found to be practically independent of the Reynolds number, R, (based on the jet velocity and particle diameter) at values of R above about 2.5 x 10^3, and to decrease with Rat smaller values. A grid placed in the jet was found to have a very strong effect on the scour rate. In an attempt to explain the effect of R on the scour behavior, turbulent pressure and velocity fluctuations were measured in air flows and water flows, respectively, over rigid scour pockets having the same geometry as those formed in the scour experiments. The normalized spectra of the fluctuations were found to be nearly independent of R, but the flow pattern was found to be very sensitive to the inlet condition, the jet deflecting upward or downward in a not wholly explainable manner. This indicates that scour behavior can be modeled only if the approach flow is also accurately modeled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of the proposed study is to use Computational Fluid Dynamics (CFD) tools to determine the wind loads by accurate numerical simulations of air flow characteristics around large highway sign structures under severe wind speeds conditions. Fully three-dimensional Reynolds- Averaged Navier-Stokes (RANS) simulations are used to estimate the total force on different panels, as well as the actual pressure distribution on the front and back faces of the panels. In particular, the present study investigates the effects of aspect ratio and sign spacing for regular panels, the effect of sign depth for the dynamic message signs that are now being used on Iowa highways, the effect induced by the presence of back-to-back signs, the effect of the presence of add-on exit signs, and the effect of the presence of trucks underneath the signs potentially creating “wind tunnel” effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this project was to determine the effect of bridge width on deck cracking in bridges. Other parameters, such as bridge skew, girder spacing and type, abutment type, pier type, and number of bridge spans, were also studied. To achieve the above objectives, one bridge was selected for live-load and long-term testing. The data obtained from both field tests were used to calibrate a three-dimensional (3D) finite element model (FEM). Three different types of loading—live loading, thermal loading, and shrinkage loading—were applied. The predicted crack pattern from the FEM was compared to the crack pattern from bridge inspection results. A parametric study was conducted using the calibrated FEM. The general conclusions/recommendations are as follows: -- Longitudinal and diagonal cracking in the deck near the abutment on an integral abutment bridge is due to the temperature differences between the abutment and the deck. Although not likely to induce cracking, shrinkage of the deck concrete may further exacerbate cracks developed from thermal effects. -- Based upon a limited review of bridges in the Iowa DOT inventory, it appears that, regardless of bridge width, longitudinal and diagonal cracks are prevalent in integral abutment bridges but not in bridges with stub abutments. -- The parametric study results show that bridge width and skew have minimal effect on the strain in the deck bridge resulting from restrained thermal expansion. -- Pier type, girder type, girder spacing, and number of spans also appear to have no influence on the level of restrained thermal expansion strain in the deck near the abutment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General equations are presented for predicting loss of prestress and camber of both composite and non- composite prestressed concrete structures. Continuous time functins of all parameters needed to solve the equations are given, and sample results included. Computed prestress loss and camber are compared with experimental data for normal weight and lightweight concrete. Methods are also presented for predicting the effect of non-prestressed tension steel in reducing time-dependent loss of prestress and camber, and for the determination of short-time deflections of uncracked and cracked prestressed members. Comparisons with experimental results are indicated for these partially prestressed methods.