7 resultados para multi-plant
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Booklet produced by the Iowa Civil Rights Commission for individuals who own, design, build, or develop multi-family housing.
Resumo:
Other Audit Report - Utilities
Resumo:
Evaluating the possible benefits of the introduction of genetically modified (GM) crops must address the issue of consumer resistance as well as the complex regulation that has ensued. In the European Union (EU) this regulation envisions the “co-existence” of GM food with conventional and quality-enhanced products, mandates the labelling and traceability of GM products, and allows only a stringent adventitious presence of GM content in other products. All these elements are brought together within a partial equilibrium model of the EU agricultural food sector. The model comprises conventional, GM and organic food. Demand is modelled in a novel fashion, whereby organic and conventional products are treated as horizontally differentiated but GM products are vertically differentiated (weakly inferior) relative to conventional ones. Supply accounts explicitly for the land constraint at the sector level and for the need for additional resources to produce organic food. Model calibration and simulation allow insights into the qualitative and quantitative effects of the large-scale introduction of GM products in the EU market. We find that the introduction of GM food reduces overall EU welfare, mostly because of the associated need for costly segregation of non-GM products, but the producers of quality-enhanced products actually benefit.
Resumo:
As a result of higher seed prices, improved planters and weed management programs, soybean growers are more aware of the importance of seeding rates and optimal plant populations at harvest. A harvest population of approximately 100,000 uniformly distributed plants per acre will maximize economic return in Iowa regardless of row spacing. There appears to be no economic advantage to harvest populations greater than, or less than, 100,000 plants per acre. Economics, however, should be considered carefully when striving for higher harvest populations since seed is expensive. Timely management, such as weed management, is more critical at low plant populations.
Resumo:
Planting soybeans in rows narrower than 30 inches can improve yield potential. Most Midwest research documents that narrow rows (less than 30 inches) yield greater than wide rows (30 inches or greater). On average in Iowa a 4.5 bu./acre yield increase can be expected using 15-inch row spacing, compared to 30-inch row spacing. These data have been fairly consistent for the past 20 years.
Resumo:
As a result of higher seed prices, improved planters and weed management programs, soybean growers are more aware of the importance of seeding rates and optimal plant populations at harvest. A harvest population of approximately 100,000 uniformly distributed plants per acre will maximize economic return in Iowa regardless of row spacing. There appears to be no economic advantage to harvest populations greater than, or less than, 100,000 plants per acre. Economics, however, should be considered carefully when striving for higher harvest populations since seed is expensive. Timely management, such as weed management, is more critical at low plant populations.
Resumo:
This publication is a guide to understanding the Iowa Department of Transportation’s roadside management programs. It offers descriptions of various landscape designs or planting styles used within or adjacent to Iowa’s highway rights-of-way, as well as various plant profiles. In addition, this guide will help you learn more about the value of plants and their contribution to our environment and society. This publication is written for persons having little or no formal training in botany, and technical terminology has been kept to the minimum necessary to maintain standards of accuracy and conciseness in the descriptions. Plants are known by common names and botanical names. Most people prefer to use common names because they are easier to spell and say. Both have been used in this publication. Botanical names are taken from Latin, Greek or “Latinized” words of other languages. Each plant species has a unique botanical name, consisting of the genus, followed by the species. Some botanical names contain additional words after the species name to designate cultivars or subspecies. Plant species are grouped into families by flower structure. Family names are Latin, so the associated common family names are included in parenthesis. Sources of information for this publication are not cited within the text to save space, avoid repetition and make it more readable. However, all references used are included in the bibliography at the end of this publication.