11 resultados para multi-component and multi-site adsorption

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iowa Department of Economic Development (IDED) helps businesses expand or locate all or part of their business in Iowa. It just makes sense for companies engaged in advanced manufacturing, biosciences and information solutions/financial services to look at Iowa and IDED helps to ensure theireconomic development timelines are met. Iowa is nationally recognized as an innovator in helping businesses by meeting their development needs in a timely and effective manner. IDED networks with Regulatory Assistance Coordinators in agencies across state government to reduce response time to businesses. This agency coordination helps to ensure that regulatory and compliance questions, or other needs associated with project site development and facility expansion are serviced quickly. We have listed information below about some of the more common regulatory requirements related to site development and expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iowa Department of Economic Development (IDED) helps businesses expand or locate all or part of their business in Iowa. It just makes sense for companies engaged in advanced manufacturing, biosciences and information solutions/financial services to look at Iowa and IDED helps to ensure their economic development timelines are met. Iowa is nationally recognized as an innovator in helping businesses by meeting their development needs in a timely and effective manner. IDED networks with Regulatory Assistance Coordinators in agencies across state government to reduce response time to businesses. This agency coordination helps to ensure that regulatory and compliance questions, or other needs associated with project site development and facility expansion are serviced quickly. We have listed information below about some of the more common regulatory requirements related to site development and expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report discusses a number of topics and presents data and other information in response to Iowa Code Section 216A.135’s mandate for an annual Plan Update. It was prepared as an e-document and relies mainly on links to other documents which, when combined, make up the complete report. The outline that follows names the issues being presented this year by the CJJPAC and is both a table of contents and a “site-map” for the report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report discusses a number of topics and presents data and other information in response to Iowa Code Section 216A.135’s mandate for an annual Plan Update. It was prepared as an edocument and relies mainly on links to other documents which, when combined, make up the complete report. The outline that follows names the issues being presented this year by the CJJPAC and is both a table of contents and a “site-map” for the report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report discusses a number of topics and presents data and other information in response to Iowa Code Section 216A.135’s mandate for an annual Plan Update. It was prepared as an edocument and relies mainly on links to other documents which, when combined, make up the complete report. The outline that follows names the issues being presented this year by the CJJPAC and is both a table of contents and a “site-map” for the report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The United States Environmental Protection Agency (EPA) has requested the Iowa Department of Public Health (IDPH) to evaluate the health impacts associated with exposure to contaminants of concern that have been found at the former Chamberlain Manufacturing Site. The EPA has been involved in the investigation and remediation of the Former Chamberlain Manufacturing Site since 2005. As part of these investigative activities, on-site soil sampling and both on-and off-site groundwater sampling has been completed. In addition, sub-slab soil gas, indoor air, and ambient air sampling at properties located near the Former Chamberlain Manufacturing Site has been completed. This health consultation addresses potential health risks to the public from exposure to the soil, groundwater and potential vapors within homes or buildings at or near the Former Chamberlain Manufacturing Site. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date there have been few investigations of the substructures in low-volume road (LVR) bridges. Steel sheet piling has the potential to provide an economical alternative to concrete bridge abutments, but it needs investigation with regard to vertical and lateral load resistance, construction methods, and performance monitoring. The objectives of this project were to develop a design approach for sheet pile bridge abutments for short-span low-volume bridges, formulate an instrumentation and monitoring plan to evaluate performance of sheet pile abutment systems, and understand the cost and construction effort associated with building the sheet pile bridge abutment demonstration project. Three demonstration projects (Boone, Blackhawk, and Tama Counties) were selected for the design, construction, and monitoring of sheet pile abutments bridges. Each site was unique and required site-specific design and instrumentation monitoring. The key findings from this study include the following: (1) sheet pile abutment bridges provide an effective solution for LVR bridges, (2) the measured stresses and deflection were different from the assumed where the differences reflect conservatism in the design and the complex field conditions, and (3) additional research is needed to optimize the design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report is divided into two volumes. This volume (Volume I) summarizes a structural health monitoring (SHM) system that was developed for the Iowa DOT to remotely and continuously monitor fatigue critical bridges (FCB) to aid in the detection of crack formation. The developed FCB SHM system enables bridge owners to remotely monitor FCB for gradual or sudden damage formation. The SHM system utilizes fiber bragg grating (FBG) fiber optic sensors (FOSs) to measure strains at critical locations. The strain-based SHM system is trained with measured performance data to identify typical bridge response when subjected to ambient traffic loads, and that knowledge is used to evaluate newly collected data. At specified intervals, the SHM system autonomously generates evaluation reports that summarize the current behavior of the bridge. The evaluation reports are collected and distributed to the bridge owner for interpretation and decision making. Volume II summarizes the development and demonstration of an autonomous, continuous SHM system that can be used to monitor typical girder bridges. The developed SHM system can be grouped into two main categories: an office component and a field component. The office component is a structural analysis software program that can be used to generate thresholds which are used for identifying isolated events. The field component includes hardware and field monitoring software which performs data processing and evaluation. The hardware system consists of sensors, data acquisition equipment, and a communication system backbone. The field monitoring software has been developed such that, once started, it will operate autonomously with minimal user interaction. In general, the SHM system features two key uses. First, the system can be integrated into an active bridge management system that tracks usage and structural changes. Second, the system helps owners to identify damage and deterioration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the request of Mr. Arnold E. Levine, of the Levine Company, Centerville, Iowa, the Iowa State Highway Commission was asked to observe the partial fabrication of two stainless steel culvert pipes and later the Commission was asked if they would like to study their durability. These pipes were fabricated April 12, 1967 in Des Moines, Personnel of the Design and Materials Department were at the fabrication, but no Research people were present. The idea for the installation was conceived and a site selected after which the project was turned over to the Research Engineer. The stainless steel pipes presumably contained the new Allegheny Metal, MF-1, whose composition is shown in Appendix A. The primary aim of the stainless steel pipe is to reduce long term costs that are incurred through replacement and upkeep. The MF-1 has a theoretical life of infinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this manual is to provide guidelines for low water stream crossings (LWSC). Rigid criteria for determining the applicability of a LWSC to a given site are not established nor is a 'cookbook" procedure for designing a LWSC presented. Because conditions vary from county to county and from site to site within the county, judgment must be applied to the suggestions contained in this manual. A LWSC is a stream crossing that will be flooded periodically and closed to traffic. Carstens (1981) has defined a LWSC as "a ford, vented ford (one having some number of culvert pipes), low water bridge, or other structure that is designed so that its hydraulic capacity will be insufficient one or more times during a year of normal rainfall." In this manual, LWSC are subdivided into these same three main types: unvented fords, vented fords and low water bridges. Within the channel banks, an unvented ford can have its road profile coincident with the stream bed or can have its profile raised some height above the stream bed.