13 resultados para mud-brick

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many cities in Iowa have retained the original brick street surfaces in downtown areas and in older residential areas as the base for modern driving surfaces. The original brick surfaces were not built to handle current and future traffic loadings. In recent years, these surfaces have tended to shift and become uneven, creating problems with safety. Asphaltic concrete overlays have been the typical rehabilitation technique in these situations. This has proven to be a successful rehabilitation technique in some cases; in other cases, the combination of movement of the brick and flexibility of the asphalt has proven to accentuate the original problems. Most of the existing literature on rehabilitation of brick streets shows the use of asphaltic concrete. Other rehabilitation methods include reconstruction of the brick surface and strengthening of the surface by placing asphaltic concrete or portland cement concrete, along with sand, underneath the brick layers. To date, little if anything has been done in the area of using portland cement concrete as an overlay of the brick surfaces. This final report documents the planning, construction, and performance of unbonded ultrathin whitetopping rehabilitation of a brick street in Oskaloosa, Iowa, in 2001. It also reports on a similar project in Des Moines that was constructed two years later in 2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many cities in Iowa have retained the original brick street surfaces in downtown areas and in older residential areas as the base for modern driving surfaces. The original brick surfaces were not built to handle current and future traffic loadings. In recent years, these surfaces have tended to shift and become uneven, creating problems with safety. Asphaltic concrete overlays have been the typical rehabilitation technique in these situations. This has proven to be a successful rehabilitation technique in some cases; in other cases, the combination of movement of the brick and flexibility of the asphalt has proven to accentuate the original problems. Most of the existing literature on rehabilitation of brick streets shows the use of asphaltic concrete. Other rehabilitation methods include reconstruction of the brick surface and strengthening of the surface by placing asphaltic concrete or portland cement concrete, along with sand, underneath the brick layers. To date, little if anything has been done in the area of using portland cement concrete as an overlay of the brick surfaces. This final report documents the planning, construction, and performance of unbonded ultrathin whitetopping rehabilitation of a brick street in Oskaloosa, Iowa, in 2001. It also reports on a similar project in Des Moines that was constructed two years later in 2003.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Safety i s a very important aspect o f the highway program. The Iowa DOT initiated an inventory o f the friction values of all paved primary roadways i n 1969. This inventory, with an ASTM E-274 test unit, has continued to the present time. The t e s t i n g frequency varies based upon traffic volume and the previous friction value. Historically , the state o f Iowa constructed a substantial amount o f pcc pavement during the 1928-30 period t o "get Iowa out o f the mud". Some of that pavement has never been resurfaced and has been subjected to more than 50 years o f wear. The textured surface has been worn away and has subsequently polished. Even though some pavements from 15 t o 50 years old continue t o function structurally , because of the loss of friction , they do not provide the desired level o f safety to the driver. As a temporary measure, "Sl ippery -When -Wet " signs have been posted on many older pcc roads due to friction numbers below t h e desirable level. These signs warn the motorist of the current conditions. An economical method of restoring the high quality frictional properties i s needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained. February 20, 2008 THIS WEEK: “The Old Brick Capitol”

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained. January 11, 2012 THIS WEEK: PROFESSORSHIPS AND STUDENT ENROLLMENT AT THE STATE UNIVERSITY BACKGROUND: The Ninth General Assembly convened January 13, 1862, and adjourned April 8, 1862—an 86-day session. The Brick Capitol in Des Moines had been the seat of government for four years. John R. Needham was the Lt. Governor presiding in the Senate, and Rush Clark was the Speaker of the House of Representatives. The Republican Party had the majority in both the House of Representatives and the Senate. The legislature had 140 members. Samuel Kirkwood was the governor, serving his second term. Governor Kirkwood was the first governor of Iowa to be re-elected to a second term and the first governor to serve nonconsecutive terms. He was 46 at the time of his first Inaugural on January 11, 1860. The 1860 census showed Iowa’s population at 674,913.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained. February 8, 2012 THIS WEEK: The Resolution Granting a Festival for the Citizens of Des Moines BACKGROUND: The following comes from a journal entry in the Pioneer Lawmakers’ Association of Iowa, Volumes 1-14, 1896-1913. The journal entry is from the Third Annual Meeting of the Pioneer Lawmakers— Reunion of 1892. The president, Charles Aldrich, called the meeting to order February 10, 1892, in the assembly rooms of the Young Men’s Christian Association. Governor Cyrus Carpenter gave the address. Cyrus Carpenter was born November 24, 1829, and died May 29, 1898. He served in the Seventh General Assembly in 1858. This was the first general assembly to meet in Des Moines in the newly constructed Brick Capitol. Carpenter was Iowa’s eighth governor since becoming a state in 1846. He was inaugurated in 1872 at the age of 42. Carpenter also served in the Iowa Senate during the 20th General Assembly in 1884

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained. January 23, 2013 THIS WEEK: Iowa’s Grasshopper Plague of 1873 BACKGROUND: Fifteen General Assembly The 15th General Assembly convened January 12 and adjourned March 19, 1874—a 67-day session. The Senate had six Democratic members, 34 Republican members, and 10 Independent members. The House of Representatives had six Democratic members, 50 Republican members, and 44 Independent members. There were a total of 150 legislators in Iowa. By 1874, the Capital had been relocated to Des Moines. The legislature had occupied the old Brick Capitol since 1858. Joseph Dysart was the Lieutenant Governor presiding in the Senate, and John Gear was Speaker of the House of Representatives. Iowa’s population at the 1870 federal census had grown to 1,194,020. Both House and Senate journals from the 15th Iowa General Assembly include several references to assisting the destitution brought on by the 1874 plague of grasshoppers in Northwestern Iowa. Senator Perkins, from the Special Committee appointed to inquire into the reports of destitution in the northwestern counties of Iowa, submitted the following report, in part: “We have examined such evidence as is attainable here, and made such inquiries of parties interested in affording temporary relief as were to be met, and are pieces satisfied in our own minds that the case is one of sufficient importance to command the attention of the State.”

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Capitol grounds have been evolving through planned and unplanned actions for more than 150 years. The 1857 Constitutio established Des Moines as the capital. The commissioners appointed to choose a site decided on land donated by Wilson Alexander Scott and Harrison Lyon. Located on the east side of the Des Moines River, on a gently rising hill, the site for the Iowa State Capitol began with fewer than 10 acres. The Old Brick Capitol was built in the center of that 10-acre plot, and the area to the north was used as a public park until work began on the present day Capitol. In 1884, the two-year process of moving from the Old Brick Capitol to the new Capitol began. The state commissioned John Weidenman to design the first formal decoration of the grounds. Weidenman’s plans for the west approach to the Capitol included planting statues, and walkways. The State held some additional land but not necessarily land adjacent to the Capitol. In 1909, legislation was passed, and in 1913, the Thirty-Fifth General Assembly enacted controversial legislation to acquire additional land. A commission was formed to locate a purposed monument honoring the long-serving U.S. Senator William B. Allison. E.L. Masqueray was hired as the architect expert focusing on the selection of a proper site for the proposed Allison Memorial. Masqueray’s plan detailed the placement of buildings and potential monuments. Growth of the Capitol Complex, as known today, began.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portland Cement Concrete (PCC) pavement has served the State of Iowa well for many years. The oldest Iowa pavement was placed in LeMars in 1904. Beginning in 1931, many miles of PCC pavement were built to "get out of the mud". Many of these early pavements provided good performance without deterioration for more than 50 years. In the late 1950s, Iowa was faced with severe PCC pavement deterioration called D cracking. Research identified the cause of this deterioration as crushed limestone containing a bad pore system. Selective quarrying and ledge control has alleviated this problem. In 1990, cracking deterioration was identified on a three-year-old pavement on US 20 in central Iowa. The coarse aggregate was a crushed limestone with an excellent history of performance in PCC pavement. Examination of cores showed very few cracks through the coarse aggregate particles. The cracks were predominately confined to the matrix. The deterioration was identified as alkali-silica reactivity (ASR) by a consultant. To investigate the cause of the deterioration, the Iowa DOT and Iowa State University jointly purchased a high resolution, low vacuum Hitachi Scanning Electron Microscope (SEM) with an energy dispersion detector. Subsequent evaluation identified no concentration of silica gel (silicon-Si), but did identify substantial amounts of sulfur-S and aluminum-AL (assumed to be ettringite) in the air voids. Some of these voids have cracks radiating from them leading us to conclude that the ettringite filled voids were a center of pressure causing the crack. The ettringite in the voids, after being subjected to sodium chloride (NaCl), initially swells and then dissolves. This low vacuum SEM research of PCC pavement deterioration supports the following conclusions: (1) A low vacuum SEM and an energy dispersion detector are very important for proper evaluation of PCC pavement deterioration; (2) There are instances today where PCC pavement deterioration is mistakenly identified as ASR; (3) Ettringite initially expands when subjected to NaCl; and the ettringite filled voids are a center-of-pressure that cracks the PCC; and (4) The deterioration of some current premature PCC pavement distress locations is caused by factors related to the formation of excessive ettringite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report is concerned with the prediction of the long-time creep and shrinkage behavior of concrete. It is divided into three main areas. l. The development of general prediction methods that can be used by a design engineer when specific experimental data are not available. 2. The development of prediction methods based on experimental data. These methods take advantage of equations developed in item l, and can be used to accurately predict creep and shrinkage after only 28 days of data collection. 3. Experimental verification of items l and 2, and the development of specific prediction equations for four sand-lightweight aggregate concretes tested in the experimental program. The general prediction equations and methods are developed in Chapter II. Standard Equations to estimate the creep of normal weight concrete (Eq. 9), sand-lightweight concrete (Eq. 12), and lightweight concrete (Eq. 15) are recommended. These equations are developed for standard conditions (see Sec. 2. 1) and correction factors required to convert creep coefficients obtained from equations 9, 12, and 15 to valid predictions for other conditions are given in Equations 17 through 23. The correction factors are shown graphically in Figs. 6 through 13. Similar equations and methods are developed for the prediction of the shrinkage of moist cured normal weight concrete (Eq. 30}, moist cured sand-lightweight concrete (Eq. 33}, and moist cured lightweight concrete (Eq. 36). For steam cured concrete the equations are Eq. 42 for normal weight concrete, and Eq. 45 for lightweight concrete. Correction factors are given in Equations 47 through 52 and Figs., 18 through 24. Chapter III summarizes and illustrates, by examples, the prediction methods developed in Chapter II. Chapters IV and V describe an experimental program in which specific prediction equations are developed for concretes made with Haydite manufactured by Hydraulic Press Brick Co. (Eqs. 53 and 54}, Haydite manufactured by Buildex Inc. (Eqs. 55 and 56), Haydite manufactured by The Cater-Waters Corp. (Eqs. 57 and 58}, and Idealite manufactured by Idealite Co. (Eqs. 59 and 60). General prediction equations are also developed from the data obtained in the experimental program (Eqs. 61 and 62) and are compared to similar equations developed in Chapter II. Creep and Shrinkage prediction methods based on 28 day experimental data are developed in Chapter VI. The methods are verified by comparing predicted and measured values of the long-time creep and shrinkage of specimens tested at the University of Iowa (see Chapters IV and V) and elsewhere. The accuracy obtained is shown to be superior to other similar methods available to the design engineer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portland Cement Concrete (PCC) pavement has served the State of Iowa well for many years. The oldest Iowa pavement was placed in LeMars in 1904. Beginning in 1931, many miles of PCC pavement were built to "get out of the mud.” Many of these early pavements provided good performance without deterioration for more than 50 years. In the late 1950's, Iowa was faced with severe PCC pavement deterioration referred to as D cracking. Research identified the cause of this deterioration as crushed limestone containing a bad pore system. Selective quarrying and ledge control has alleviated this problem. In 1990, cracking deterioration was identified on a three year old pavement on us 20 in central Iowa. The coarse aggregate was a crushed limestone with an excellent history of performance in PCC pavement. Examination of cores showed very few cracks through the coarse aggregate particles. The cracks were predominately confined to the matrix. The deterioration was identified as alkali-silica reactivity (ASR) by a consultant.