27 resultados para moisture recycling

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The previous research performed laboratory experiments to measure the impacts of the curing on the indirect tensile strength of both CIR-foam and CIR-emulsion mixtures. However, a fundamental question was raised during the previous research regarding a relationship between the field moisture content and the laboratory moisture content. Therefore, during this research, both temperature and moisture conditions were measured in the field by embedding the sensors at a midpoint and a bottom of the CIR layer. The main objectives of the research are to: (1) measure the moisture levels throughout a CIR layer and (2) develop a moisture loss index to determine the optimum curing time of CIR layer before HMA overlay. To develop a set of moisture loss indices, the moisture contents and temperatures of CIR-foam and CIR-emulsion layers were monitored for five months. Based on the limited field experiment, the following conclusions are derived: 1. The moisture content of the CIR layer can be monitored accurately using the capacitance type moisture sensor. 2. The moisture loss index for CIR layers is a viable tool in determining the optimum timing for an overlay without measuring actual moisture contents. 3. The modulus back-calculated based on the deflection measured by FWD seemed to be in a good agreement with the stiffness measured by geo-gauge. 4. The geo-gauge should be considered for measuring the stiffness of CIR layer that can be used to determine the timing of an overlay. 5. The stiffness of CIR-foam layer increased as a curing time increased and it seemed to be more influenced by a temperature than moisture content. The developed sets of moisture loss indices based on the field measurements will help pavement engineers determine an optimum timing of an overlay without continually measuring moisture conditions in the field using a nuclear gauge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the previous study, moisture loss indices were developed based on the field measurements from one CIR-foam and one CIR-emulsion construction sites. To calibrate these moisture loss indices, additional CIR construction sites were monitored using embedded moisture and temperature sensors. In addition, to determine the optimum timing of an HMA overlay on the CIR layer, the potential of using the stiffness of CIR layer measured by geo-gauge instead of the moisture measurement by a nuclear gauge was explored. Based on the monitoring the moisture and stiffness from seven CIR project sites, the following conclusions are derived: 1. In some cases, the in-situ stiffness remained constant and, in other cases, despite some rainfalls, stiffness of the CIR layers steadily increased during the curing time. 2. The stiffness measured by geo-gauge was affected by a significant amount of rainfall. 3. The moisture indices developed for CIR sites can be used for predicting moisture level in a typical CIR project. The initial moisture content and temperature were the most significant factors in predicting the future moisture content in the CIR layer. 4. The stiffness of a CIR layer is an extremely useful tool for contractors to use for timing their HMA overlay. To determine the optimal timing of an HMA overlay, it is recommended that the moisture loss index should be used in conjunction with the stiffness of the CIR layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold In-Place Recycling (CIR) has been used widely in rehabilitating the rural highways because it improves a long-term pavement performance. A CIR layer is normally covered by a hot mix asphalt (HMA) overlay in order to protect it from water ingress and traffic abrasion and obtain the required pavement structure and texture. Curing is the term currently used for the period of time that a CIR layer should remain exposed to drying conditions before an HMA overlay is placed. The industry standard for curing time is 10 days to 14 days or a maximum moisture content of 1.5 percent, which appear to be very conservative. When the exposed CIR layer is required to carry traffic for many weeks before the wearing surface is placed, it increases the risk of a premature failure in both CIR layer and overlay. This study was performed to explore technically sound ways to identify minimum in-place CIR properties necessary to permit placement of the HMA overlay. To represent the curing process of CIR pavement in the field construction, three different laboratory curing procedures were examined: 1) uncovered, 2) semi-covered and 3) covered specimens. The indirect tensile strength of specimens in all three curing conditions did not increase during an early stage of curing but increased during a later stage of curing usually when the moisture content falls below 1.5%. Dynamic modulus and flow number increased as curing time increased and moisture contents decreased. For the same curing time, CIR-foam specimens exhibited the higher tensile strength and less moisture content than CIR-emulsion. The laboratory test results concluded that the method of curing temperature and length of the curing period significantly affect the properties of the CIR mixtures. The moisture loss index was developed to predict the moisture condition in the field and, in the future, this index be calibrated with the measurements of temperature and moisture of a CIR layer in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Audit report on the Adair County Sanitary Landfill and Recycling Center for the year ended June 30, 2007

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Audit report on the Adair County Sanitary Landfill and Recycling Center for the year ended June 30, 2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa is one of the more progressive recycling states in the U.S. due in large part to its environmental technical assistance programs for business. The Iowa Department of Economic Development (IDED), Iowa Department of Natural Resources (IDNR), the Recycle Reuse Technology Transfer Center (RRTTC) and the Iowa Waste Reduction Center (IWRC) work together to offer services that help businesses save money, increase operational efficiencies, enhance regulatory compliance and manage difficult waste management issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa is one of the more progressive recycling states in the U.S. due in large part to its environmental technical assistance programs for business. The Iowa Department of Economic Development (IDED), Iowa Department of Natural Resources (IDNR), the Recycle Reuse Technology Transfer Center (RRTTC) and the Iowa Waste Reduction Center (IWRC) work together to offer services that help businesses save money, increase operational efficiencies, enhance regulatory compliance and manage difficult waste management issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several agencies specify AASHTO T283 as the primary test for field acceptance of moisture susceptibility in hot mix asphalt. When used in this application, logistical difficulties challenge its practicality, while repeatability is routinely scrutinized by contractors. An alternative test is needed which can effectively demonstrate the ability to screen mixtures based on expected performance. The ideal replacement can be validated with field performance, is repeatable, and allows for prompt reporting of results. Dynamic modulus, flow number, AASHTO T283, Hamburg wheel tracking device (HWTD), and the moisture induced sensitivity test (MIST) were performed on plant produced surface mixes in Iowa. Follow-up distress surveys were used to rank the mixes by their performance. The rankings indicate both the quantity of swelling from MIST conditioning and submersed flow number matched the performance ranking of all but one mixture. Hamburg testing parameters also appear effective, namely the stripping inflection point and the ratio between stripping slope and the creep slope. Dynamic modulus testing was ineffective, followed by AASHTO T283 and ratios produced from flow number results of conditioned samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The average thickness of the existing asphalt cement concrete (ACC) along route E66 in Tama County was 156 mm (6.13 in.). The rehabilitation strategy called for widening the base using the top 75 mm (3 in.) of the existing ACC by a recycling process involving cold milling and mixing with additional emulsion/rejuvenator. The material was then placed into a widening trench and compacted to match the level of the milled surface. The project had the following results: (1) Cold recycled ACC pavement provided adequate pavement structure for a low volume road; (2) Premature cracking of the ACC in the widened pavement area was caused by compaction of the mix over a saturated subgrade; and (3) Considerably less transverse and longitudinal cracking was observed with 75 mm (3 in.) of cold recycled ACC and a 50 mm (2 in.) hot mix ACC overlay than with a conventional hot mix overlay with no cold recycling. More research should be done on efficient construction procedures and incorporating longer test sections for proper evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This demonstration project consisted of three adjacent highway resurfacing projects using asphalt cement concrete removed from an Interstate highway which had become severely rutted. The salvaged asphaltic concrete was later crushed and hauled to a plant site where it was combined with virgin materials to resurface the three projects. Only two of the projects were used for performance evaluation as the third project was in an interchange area including ramps and was otherwise too short. It was concluded that recycling was cost effective and a high quality surface can be constructed using recycled asphalt cement concrete.