13 resultados para metallic truck-tier

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable estimates of heavy-truck volumes are important in a number of transportation applications. Estimates of truck volumes are necessary for pavement design and pavement management. Truck volumes are important in traffic safety. The number of trucks on the road also influences roadway capacity and traffic operations. Additionally, heavy vehicles pollute at higher rates than passenger vehicles. Consequently, reliable estimates of heavy-truck vehicle miles traveled (VMT) are important in creating accurate inventories of on-road emissions. This research evaluated three different methods to calculate heavy-truck annual average daily traffic (AADT) which can subsequently be used to estimate vehicle miles traveled (VMT). Traffic data from continuous count stations provided by the Iowa DOT were used to estimate AADT for two different truck groups (single-unit and multi-unit) using the three methods. The first method developed monthly and daily expansion factors for each truck group. The second and third methods created general expansion factors for all vehicles. Accuracy of the three methods was compared using n-fold cross-validation. In n-fold cross-validation, data are split into n partitions, and data from the nth partition are used to validate the remaining data. A comparison of the accuracy of the three methods was made using the estimates of prediction error obtained from cross-validation. The prediction error was determined by averaging the squared error between the estimated AADT and the actual AADT. Overall, the prediction error was the lowest for the method that developed expansion factors separately for the different truck groups for both single- and multi-unit trucks. This indicates that use of expansion factors specific to heavy trucks results in better estimates of AADT, and, subsequently, VMT, than using aggregate expansion factors and applying a percentage of trucks. Monthly, daily, and weekly traffic patterns were also evaluated. Significant variation exists in the temporal and seasonal patterns of heavy trucks as compared to passenger vehicles. This suggests that the use of aggregate expansion factors fails to adequately describe truck travel patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

the Iowa Department of Transportation and the offices of Motor Vehicle Enforcement, Motor Carrier Services, Vehicle Services, and Drivers Services want to make your travels into and through our state safer, legal and less complicated. This book will address and clarify many of the rules and regulations concerning the operation of commercial vehicles in the state of Iowa. However, it is not possible to include every rule and regulation that may apply. If any questions exist, the reader is encouraged to contact other sources, including the agencies listed on page 4 and 5 of this book.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

the Iowa Department of Transportation and the offices of Motor Vehicle Enforcement, Motor Carrier Services, Vehicle Services, and Drivers Services want to make your travels into and through our state safer, legal and less complicated. This book will address and clarify many of the rules and regulations concerning the operation of commercial vehicles in the state of Iowa. However, it is not possible to include every rule and regulation that may apply. If any questions exist, the reader is encouraged to contact other sources, including the agencies listed on page 4 and 5 of this book.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicle Traffic Map produced by the Iowa Department of Transportation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Federal Highway Administration (FHWA) approves the selection of the Reconstruction of All or Part of the Interstate (Construction Alternative) as the Preferred Alternative to provide improvements to the interstate system in the Omaha/Council Bluffs metropolitan area, extending across the Missouri River on Interstate 80 to east of the Interstate 480 interchange in Omaha, Nebraska. The study considered long-term, broad-based transportation improvements along Interstate I-29 (I-29), I-80, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. FHWA also approves the decisions to provide full access between West Broadway and I-29, design the I-80/I-29 overlap section as a dual-divided freeway, and locating the new I-80 Missouri River Bridge north of the existing bridge. Improvements to the interstate system, once implemented, would bring the segments of I-80 and I-29 (see Figure 1) up to current engineering standards and accommodate future traffic needs. This Record of Decision (ROD) concludes Tier 1 of the Council Bluffs Interstate System (CBIS) Improvements Project. Tier 1 included an examination of the area’s transportation needs, a study of alternatives to satisfy them, and broad consideration of potential environmental and social impacts. The Tier 1 evaluation consisted of a sufficient level of engineering and environmental detail to assist decision makers in selecting a preferred transportation strategy. During Tier 1 a Draft EIS (FHWA-IA- EIS-04-01D) was developed which was approved by FHWA, Iowa DOT, and Nebraska Department of Roads (NDOR) in November 2004 with comments accepted through March 15, 2005. The Draft EIS summarized the alternatives that were considered to address the transportation needs around Council Bluffs; identified reconstruction of all or part of the interstate, the “Construction Alternative,” as the Preferred Alternative; identified three system-level decisions that needed to be made at the Tier 1 level; and invited comment on the issues. The Final EIS (FHWA-IA- EIS-04-01F) further documented the Construction Alternative as the Preferred Alternative and identified the recommended decisions for the three system level decisions that needed to be made in Tier 1. This ROD defines the Selected Alternative determined in the Tier 1 studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Tier 2 Environmental Assessment (EA) presents the results of studies and analyses conducted to determine the potential impacts of proposed improvements in Segment 3 of the Council Bluffs Interstate System (CBIS) in the Council Bluffs metropolitan area. This document is tiered to the Tier 1 Draft and Final Environmental Impact Statements (EIS) that evaluated impacts of the overall CBIS Improvements Project, which includes five segments of independent utility1 This EA on Segment 3 of the Project is divided into the following sections: and encompasses 18 mainline miles of Interstate and 14 interchanges along Interstate 80 (I-80), Interstate 29 (I-29), and Interstate 480 (I-480). More information about the tiering process is found below under Project Background. • Section 1 provides background information on the Project and discusses the relationship between the earlier Tier 1 EIS and this Tier 2 EA. It also discusses the proposed action and the area studied, the purpose of the Project, and the need for the Project based on transportation problems that currently exist or are expected in the future. • Section 2, Alternatives, identifies the range of alternatives considered for Segment 3 to address the transportation problems identified in Section 1. It also identifies the alternatives retained for further study in this EA and the preferred Segment 3 alternative. • Section 3, Affected Environment and Environmental Consequences, describes the general environment for each resource affected by the proposed improvements. It also describes the potential environmental impacts of the Segment 3 Project and methods to avoid, minimize, and mitigate impacts. • Section 4, Disposition, lists the agencies and organizations that will receive copies of this EA and the locations at which this EA will be available for public review. • Section 5, Comments and Coordination, summarizes the agency coordination and public involvement efforts in conjunction with the Segment 3 Project. • Section 6, Conclusion and Recommendation, summarizes resource impacts. • Section 7, References, lists the sources cited in this EA. For Segment 3, the Federal Highway Administration (FHWA) and Iowa Department of Transportation (Iowa DOT) determined that an EA is the appropriate level of Tier 2 study to comply with the National Environmental Policy Act (NEPA) requirements. The primary purpose of an EA is to clearly establish the significance of a project’s environmental impacts. That analysis is included in this document.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicle Traffic Map produced by the Iowa Department of Transportation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation and the offices of Motor Vehicle Enforcement, Vehicle and Motor Carrier Services, and Driver Services want to make your travels into and through our state safer, legal and less complicated. This book will address and clarify many of the rules and regulations concerning the operation of commercial vehicles in the State of Iowa. However, it is not possible to include every rule and regulation that may apply. If any questions exist, the reader is encouraged to contact other sources, including the agencies listed on pages 4 and 5 of this book.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of non-metallic load transfer and reinforcement devices for concrete highway pavements is a possible alternative to avoid corrosion problems related to the current practice of steel materials. Laboratory and field testing of highway pavement dowel bars, made of both steel and fiber composite materials, and fiber composite tie rods were carried out in this research investigation. Fatigue, static, and dynamic testing was performed on full-scale concrete pavement slabs which were supported by a simulated subgrade and which included a single transverse joint. The bahavior of the full-scale specimens with both steel and fiber composite dowels placed in the test joints was monitored during several million load cycles which simulated truck traffic at a transverse joint. Static bond tests were conducted on fiber composite tie rods to determine the required embedment length. These tests took the form of bending tests which included curvature and shear in the embedment zone and pullout tests which subjected the test specimen to axial tension only. Fiber composite dowel bars were placed at two transverse joints during construction of a new concrete highway pavement in order to evaluate their performance under actual field conditions. Fiber composite tie rods were also placed in the longitudinal joint between the two fiber composite doweled transverse joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2010, 16.5 percent of all fatal vehicle crashes in Iowa involved large trucks compared to the national average of 7.8 percent. Only about 16 percent of these fatalities involved the occupants of the heavy vehicles, meaning that a majority of the fatalities in fatal crashes involve non-heavy-truck occupants. These statistics demonstrate the severe nature of heavy-truck crashes and underscore the serious impact that these crashes can have on the traveling public. These statistics also indicate Iowa may have a disproportionately higher safety risk compared to the nation with respect to heavy-truck safety. Several national studies, and a few statewide studies, have investigated large-truck crashes; however, no rigorous analysis of heavy-truck crashes has been conducted for Iowa. The objective of this study was to investigate and identify the causes, locations, and other factors related to heavy-truck crashes in Iowa with the goal of reducing crashes and promoting safety. To achieve this objective, this study used the most current statewide data of heavy-truck crashes in Iowa. This study also attempted to assess crash experience with respect to length of commercial driver’s license (CDL) licensure using the most recent five years of CDL data linked to the before mentioned crash data. In addition, this study used inspection and citation data from the Iowa Department of Transportation (DOT) Motor Vehicle Division and Iowa State Patrol to investigate the relationship between enforcement activities and crash experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project investigated regulatory issues that may affect or limit freight movement in Iowa and other Midwest states: Illinois, Kansas, Minnesota, Missouri, Nebraska, South Dakota, and Wisconsin. Current state regulations for the following are reviewed and summarized: - Vehicle dimensions - Vehicle weights - Speed limits - Weight compliance enforcement - Fees and taxes - Driver qualifications - Medical certification - Hours of service - Oversize-overweight permits

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report documents work undertaken in the demonstration of a low-cost Automatic Weight and Classification System (AWACS). An AWACS procurement specification and details of the results of the project are also included. The intent of the project is to support and encourage transferring research knowledge to state and local agencies and manufacturers through field demonstrations. Presently available, Weigh-in-Motion and Classification Systems are typically too expensive to permit the wide deployment necessary to obtain representative vehicle data. Piezo electric technology has been used in the United Kingdom and Europe and is believed to be the basic element in a low-cost AWACS. Low-cost systems have been installed at two sites, one in Portland Cement Concrete (PCC) pavement in Iowa and the other in Asphaltic Cement Concrete (ACC) pavement in Minnesota to provide experience with both types of pavement. The systems provide axle weights, gross vehicle weight, axle spacing, vehicle classification, vehicle speed, vehicle count, and time of arrival. In addition, system self-calibration and a method to predict contact tire pressure is included in the system design. The study has shown that in the PCC pavement, the AWACS is capable of meeting the needs of state and federal highway agencies, producing accuracies comparable to many current commercial WIM devices. This is being achieved at a procurement cost of substantially less than currently available equipment. In the ACC pavement the accuracies were less than those observed in the PCC pavement which is concluded to result from a low pavement rigidity at this site. Further work is needed to assess the AWACS performance at a range of sites in ACC pavements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.