5 resultados para low order streams
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Executive Orders from Governor Ray. Instruct the State Car Dispatcher to require all state-owned vehicles to use low-lead or unleaded gasoline whenever possible.
Resumo:
This study was conducted for the purpose of evaluating a new concept for a bank-protection structure: The Iowa Vane . The underlying idea involves countering the torque exerted on the primary flow by its curvature and vertical velocity gradient, thereby eliminating or significantly reducing the secondary flow and thus reducing the undermining of the outer banks and the high-velocity attack on it. The new structure consists of an array of short, vertical, submerged vanes installed with a certain orientation on the channel bed. A relatively small number of vanes can produce bend flows which are practically uniform across the channel. The height of the vanes is less than half the water depth, and their angle with the flow direction is of the order of l0 degrees. In this study, design relations have been established. The relations, and the vanes' overall performance, have been tested in a laboratory model under different flow and sediment conditions. The results are used for the design of an Iowa-Vane bank protection structure for a section of East Nishnabotna River along U.S. Highway 34 at Red Oak, Iowa.
Resumo:
A statewide study was performed to develop regional regression equations for estimating selected annual exceedance- probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedanceprobability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized leastsquares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized leastsquares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.
Resumo:
Physical habitat characteristics such as stream width, depth, instream cover, and substrate composition are important environmental factors that shape Iowa’s stream fish species assemblages. The Iowa Department of Natural Resources (IDNR) stream biological assessment program collects physical habitat data to help interpret fish assemblage sampling results in order to assess stream health condition and the attainment status of designated aquatic life uses. The quantitative habitat indicators and interpretative guidelines developed in this study are designed for specific applications within the stream bioassessment program. These tools might also be useful to natural resource managers for purposes such as stream habitat improvement prioritization, goal-setting, and performance assessment.
Resumo:
In order to determine the adequacy with which safety problems on low-volume rural roadways were addressed by the four states of Federal Region VII (Iowa, Kansas, Missouri, and Nebraska), a review was made of the states' safety policies. After reviewing literature dealing with the identification of hazardous locations, evaluation methodologies, and system-wide safety improvements, a survey of the states' safety policies was conducted. An official from each state was questioned about the various aspects and procedures dealing with safety improvements. After analyzing and comparing the remarkably diverse policies, recommendations were made in the form of a model safety program. This program included special modifications that would help remediate hazards on low-volume rural roadways. Especially encouraged is a system-wide approach to improvement which would cover all parts of the highway system, not just urban and high-volume roadways.