4 resultados para local level
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
As a guide for librarians, library policy makers and the local level, community leaders, local and state policy makers, and library customers across the state, these recommendations create a vision of libraries as friendly, welcoming places where Iowans can access inform ation in person or on-lin e, ob tain, an d use ideas and truste d info rmatio n tha t will enhance their quality of life. This report specifies the steps to achieving this vision and creates an environment of opportunity to m ove s teadily toward the new system.
Resumo:
This report is one of two products for this project with the other being a design guide. This report describes test results and comparative analysis from 16 different portland cement concrete (PCC) pavement sites on local city and county roads in Iowa. At each site the surface conditions of the pavement (i.e., crack survey) and foundation layer strength, stiffness, and hydraulic conductivity properties were documented. The field test results were used to calculate in situ parameters used in pavement design per SUDAS and AASHTO (1993) design methodologies. Overall, the results of this study demonstrate how in situ and lab testing can be used to assess the support conditions and design values for pavement foundation layers and how the measurements compare to the assumed design values. The measurements show that in Iowa, a wide range of pavement conditions and foundation layer support values exist. The calculated design input values for the test sites (modulus of subgrade reaction, coefficient of drainage, and loss of support) were found to be different than typically assumed. This finding was true for the full range of materials tested. The findings of this study support the recommendation to incorporate field testing as part of the process to field verify pavement design values and to consider the foundation as a design element in the pavement system. Recommendations are provided in the form of a simple matrix for alternative foundation treatment options if the existing foundation materials do not meet the design intent. The PCI prediction model developed from multi-variate analysis in this study demonstrated a link between pavement foundation conditions and PCI. The model analysis shows that by measuring properties of the pavement foundation, the engineer will be able to predict long term performance with higher reliability than by considering age alone. This prediction can be used as motivation to then control the engineering properties of the pavement foundation for new or re-constructed PCC pavements to achieve some desired level of performance (i.e., PCI) with time.
Resumo:
The proposed Federal Highway Administration (FHWA) amendments to the Manual of Uniform Traffic Control Devices (MUTCD) will change the way local agencies manage their pavement markings and places a focus on pavement marking quality and management methods. This research effort demonstrates how a pavement marking maintenance method could be developed and used at the local agency level. The report addresses the common problems faced by agencies in achieving good pavement marking quality and provides recommendations specific towards these problems in terms of assessing pavement marking needs, selecting pavement marking materials, contracting out pavement marking services, measuring and monitoring performance, and in developing management tools to visualize pavement marking needs in a GIS format. The research includes five case studies, three counties and two cities, where retroreflectivity was measured over a spring and fall season and then mapped to evaluate pavement marking performance and needs. The research also includes over 35 field demonstrations (installation and monitoring) of both longitudinal and transverse durable markings in a variety of local agency settings all within an intense snow plow state.
Resumo:
As truck traffic on Iowa secondary roads has increased, engineers have moved to concrete pavements of greater depths. Early designs included thickened edge pavements and depths of seven inches or greater. The designs typically did not have load transfer devices installed in the transverse joints and relied on aggregate interlock for this purpose. In some cases, aggregate interlock was not adequate to deal with the soils and traffic conditions and faulting of the joints has begun to appear. Engineers are now faced with the need to install or retrofit load transfer in the joints to preserve the pavements. Questions associated with this decision range from the type of dowel material to dowel diameter, spacing, number of bars, placement method, and construction techniques to be used to assure reduction or elimination of faulting. Buena Vista County constructed a dowel bar retrofit project on one mile of road. The plan called for addition of the dowels (2, 3, or 4) in the outer wheel path only and surface grinding in lieu of asphalt overlay. The project included the application of elliptical- and round-shaped dowels in a rehabilitation project. Dowel material types included conventional epoxy-coated steel and fiber-reinforced polymer (FRP). This work involved the determination of relative costs in materials to be used in this type of work and performance of FRP and elliptical-shaped steel dowels in the retrofit work. The results indicate good performance from each of the bar configurations and use the results of ride and deflection testing over the research period to project the benefits that can be gained from each configuration vs. the anticipated construction costs. The reader is cautioned that this project could not relate the number of dowels required to the level of anticipated truck traffic for other roads that might be considered.