19 resultados para local development
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume (this volume) summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume (this volume) provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume (this volume) introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
For the 2004 strategic planning process at Iowa Workforce Development, Director Richard Running asked for as much input from all staff as possible. As a result, planning staff designed an extensive process to gather input over about a three month period during the late spring and summer: • A Guide to Staff Involvement was drafted and distributed to staff in offices throughout the state. This guide provided a brief explanation of the planning process and quoted extensively from the Vilsack/Pederson Leadership Agenda and the 2003 IWD strategic plan to illustrate each step and to show examples of alignment. The guide also provided suggestions for staff in various locations and work units to conduct their own planning sessions. The structure was designed to solicit feedback regarding elements (vision, mission, guiding principles, goals and strategies) of the existing 2003 plan. Particular attention was devoted to securing non-management staff’s perspective during the internal and external assessment exercises. • Several local offices did conduct their own structured input sessions following the suggested guidelines and sent the results to planning staff in the central administrative offices. • Other work units in many locations opted to ask planning staff to facilitate planning sessions for them. The results of these sessions were also gathered by planning staff. In all, dozens of input sessions were held and hundreds of IWD staff participated directly in the process. Because all the sessions followed similar guidelines, it was relatively easy to combine all of the input received and spot common themes that surfaced from the many sessions. A composite of all the flip chart notes was compiled into one large document (for those who like lots of detail) and another document summarized the key themes that emerged. This information was used in a day-long planning retreat on August 20. Management staff members from throughout the department were invited and each work unit and sub-state region also brought a non-management staff person as well. This group reviewed the themes from the earlier sessions and then addressed each element of the 2003 plan, proposing refinements for almost all sections. Subsequently, senior management reviewed the results of the retreat and made the final decisions for the new 2004 plan. This thorough approach, with its special emphasis on input from line staff, did result in some significant changes to IWD’s plan. Local office staff, for example, consistently expressed the need to step up our marketing efforts, especially with employers. Another need that was expressed clearly and often was the need to beef up staff training efforts, much of the capacity for which had been lost in budget and staff reductions a few years ago. Neither of these issues is new, but the degree of concern expressed by IWD staff has caused us to elevate their importance in this year’s plan.
Resumo:
FY2007 was a productive year for the Iowa Grape and Wine Development Commission. Fourteen proposals were recommended for funding totaling over $390,000 in outlays. Included in the approved proposals were funds for the establishment and staffing of a Midwest Grape and Wine Institute at Iowa State University, a newly created viticulturist position at Des Moines Area Community College, funding for the first annual Mid-American Wine Competition, and marketing and promotion of four regional cooperative wine events and one wine trail. Commission funding supported a survey of commercial wine producers and grape growers and a new brochure on Iowa’s vineyards. A committee was formed to provide details for a Scholarship Program to aid vineyard and winery staff with the expenses of accredited coursework. Based on the survey conducted and from other governmental and industry sources, the Iowa grape and wine industry appears to continue to be very viable and growth continues at a strong pace. Wine produced in the state for 2007 was estimated at a market value in excess of $12.3 million. A tabulation of the budget revealed that just over $800,000 in wine gallonage tax appropriations have been received into the Grape and Wine Development Fund from 15 FY2003 through FY2007. Expenditures have totaled just over $607,000 during that same time. Just over 80% of expenditures have gone to “Technical” spending. Over time, funds invested in “Technical” programs will translate into an increasingly educated and institutionally-supported industry. Local, regional, and statewide events also appear to be increasing in popularity and the Commission plans to continue and increase support for these events. It is hoped the Scholarship Program will be up and running and funding will need to be appropriated for that project. The Commission also believes many projects and events will become more and more self sustaining as they develop and mature. As they continue to support Iowa’s grape and wine industry, the members of the Commission look forward to working with individuals, commercial enterprises, state and federal agencies, and industry-sponsored institutions in the upcoming year and in years to come.
Resumo:
FY2008 was a productive year for the Iowa Grape and Wine Development Commission. Sixteen proposals were recommended for funding from FY2008 funds and carryover totaling just over $396,000 in outlays. Included in the approved proposals were staffing and equipment for the Midwest Grape and Wine Industry Institute’s wine diagnostics laboratory at Iowa State University, continued support for the viticulturist position at Des Moines Area Community College, funding for the second annual Mid-American Wine Competition, and assistance for marketing and promotion of Ice coats an Iowa vineyard after a February 2008 ice storm. Photo by Mike White and courtesy of Iowa State University. 16 two wine trail associations and seven festivals and events. Commission funding supported a salaried position within IDALS to manage the Iowa Grape and Wine Development Fund and to serve as the Director of the Iowa Grape and Wine Development Commission. The Commission approved funding for a Scholarship Program. The formally created Scholarship Committee met twice in FY2008 to finalize details for the Program and to approve scholarships to twenty-six applicants to aid with the expenses of accredited coursework. Based on data collected by IDALS, the Iowa Department of Economic Development, the Iowa Alcoholic Beverages Division, and Iowa State University the Iowa grape and wine industry appears to continue to be very viable and growth continues at a strong pace. Presently, Iowa ranks 14th in the nation for the number of wineries, and wine produced in the state for 2008 was estimated at a market value in excess of $14.0 million. A tabulation of the budget revealed that just over $1,080,000 in wine gallonage tax appropriations and legislative appropriations have been deposited into the Grape and Wine Development Fund from FY2003 through FY2008. Removing encumbered funds, expenditures have totaled just over $942,500 during that same time. “Financial” funding – used for fostering public awareness and participation of industry events - increased from 6% of expenditures in FY2007 to 9% in FY2008. Used for support of research, education, and outreach, a little over 80% of expenditures and encumbered funds were earmarked for “Technical” spending. Over time, funds invested in “Technical” programs will translate into an increasingly educated and institutionally-supported industry. Local, regional, and statewide events also appeared to be increasing in popularity. The Commission was encouraged to see increased support for these events. It is hoped, too, that the Scholarship Program will provide needed funding to help meet the educational goals of the industry’s workforce. As they continue to support Iowa’s grape and wine industry, the Commissioners look forward to working with individuals, commercial enterprises, state and federal agencies, and industry-sponsored institutions in FY2009 and in years to come.
Resumo:
This document serves as a reference guide to local planning agencies for the development of their regional Transportation Improvement Program (TIP) and the Statewide Transportation Improvement Program (STIP).
Resumo:
The Rebuild Iowa Office (RIO) continues to coordinate the state‘s recovery effort from the storms, tornadoes and floods of 2008. Much has been accomplished since the Office‘s last quarterly report was issued in July 2010. State funding has been disbursed to help Iowans with unmet needs and housing. Local governments and entities are utilizing millions of federal dollars so thousands of disaster-impacted homeowners can be offered a buyout. More infrastructure projects are under construction and new neighborhoods are being built with mitigation efforts in mind. However, as Iowa continues to celebrate many successes along the road to recovery, it must also address the numerous challenges that are encountered along the path. Recovering from the state‘s largest disaster must be looked at as a marathon, not a sprint. Over the past three months, the RIO has especially remained focused on helping small business owners impacted by the 2008 disasters. Many disaster-affected businesses have reopened their doors, however their debt load continues to be overwhelming and many still struggle with the timeliness of the disbursement of funds. This report describes how programs and recent modifications are working to assist recovering businesses. This report contains updates on housing progress while outlining the complexities behind certain programs and the bottlenecks communities are facing due to strict federal guidelines for implementation. This following pages also describe how Iowa is implementing Smart Planning principles, publicizing flood awareness through outreach efforts and preparing a blueprint for the state to follow when future disasters occur. As always, the RIO recognizes and thanks the countless leaders and front-line workers from local, regional, state and federal government, businesses, non-profit organizations and private citizens that have provided input, support and leadership. Their dedication to Iowa‘s disaster recovery has made the plans and projects on the following pages possible.
Resumo:
Transportation agencies in Iowa are responsible for a significant public investment with the installation and maintenance of traffic control devices and pavement markings. Included in this investment are thousands of signs and other inventory items, equipment, facilities, and staff. The proper application of traffic control devices and pavement markings is critical to public safety on streets and highways, and local governments have a prescribed responsibility under the Code of Iowa to properly manage these assets. This research report addresses current traffic control and pavement marking application, maintenance, and management in Iowa.
Resumo:
This document contains two related, but separate reports. The Juvenile Crime Prevention Community Grant Fund Outcomes Report is a summary of outcomes from services and activities funded through the Juvenile Crime Prevention Community Grant Fund in FY2001. The Juvenile Justice Youth Development Program Summary describes Iowa communities’ current prevention and sanction programs supported with funding from the Division of Criminal and Juvenile Justice Planning (CJJP) during FY2002. The material in Juvenile Crime Prevention Community Grant Fund Outcomes Report is presented in response to a legislative mandate to report specific prevention outcomes for the community Grant Fund. It includes a brief description of a Youth Development Results Framework established by the Iowa Collaboration for Youth Development. Outcomes are reported using this results framework, which was developed by a number of state agencies as a common tool for various state programs involving youth development related planning and funding processes. Included in this report is a description of outcomes from the prevention activities funded, all or in part, by the Community Grant Fund, as reported by local communities. The program summaries presented in the Juvenile Justice Youth Development Program Summary provide an overview of local efforts to implement their 2002 Juvenile Justice Youth Development plans and include prevention and sanction programs funded through the combined resources of the State Community Grant Fund and the Federal Title V Prevention, Juvenile Justice & Delinquency Prevention Act Formula Grant and Juvenile Accountability Incentive Block Grant programs. These combined funds are referred to in this document as the Juvenile Justice Youth Development (JJYD) funds. To administer the JJYD funds, including funds from the Community Grant Fund, CJJP partners with local officials to facilitate a community planning process that determines the communities’ priorities for the use of the funds. The local planning is coordinated by the Iowa’s Decategorization Boards (Decats). These local officials and/or their staff have been leaders in providing oversight or staff support to a variety of local planning initiatives (e.g. child welfare, Comprehensive Strategy Pilot Projects, Empowerment, other) and bring child welfare and community planning experience to the table for the creation of comprehensive community longterm planning efforts. The allocation of these combined funds and the technical assistance received by the Decats from CJJP is believed to have helped enhance both child welfare and juvenile justice efforts locally and has provided for the recognition and establishment of connections for joint child welfare/juvenile justice planning. The allocation and local planning approach has allowed funding from CJJP to be “blended” or “braided” with other local, state, and federal dollars that flow to communities as a result of their local planning responsibilities. The program descriptions provided in this document reflect services and activities supported with JJYD funds. In many cases, however, additional funding sources have been used to fully fund the programs. Most of the information in this document’s two reports was submitted to CJJP by the communities through an on- line planning and reporting process established jointly by the DHS and CJJP.
Resumo:
Researchers should continuously ask how to improve the models we rely on to make financial decisions in terms of the planning, design, construction, and maintenance of roadways. This project presents an alternative tool that will supplement local decision making but maintain a full appreciation of the complexity and sophistication of today’s regional model and local traffic impact study methodologies. This alternative method is tailored to the desires of local agencies, which requested a better, faster, and easier way to evaluate land uses and their impact on future traffic demands at the sub-area or project corridor levels. A particular emphasis was placed on scenario planning for currently undeveloped areas. The scenario planning tool was developed using actual land use and roadway information for the communities of Johnston and West Des Moines, Iowa. Both communities used the output from this process to make regular decisions regarding infrastructure investment, design, and land use planning. The City of Johnston case study included forecasting future traffic for the western portion of the city within a 2,600-acre area, which included 42 intersections. The City of West Des Moines case study included forecasting future traffic for the city’s western growth area covering over 30,000 acres and 331 intersections. Both studies included forecasting a.m. and p.m. peak-hour traffic volumes based upon a variety of different land use scenarios. The tool developed took goegraphic information system (GIS)-based parcel and roadway information, converted the data into a graphical spreadsheet tool, allowed the user to conduct trip generation, distribution, and assignment, and then to automatically convert the data into a Synchro roadway network which allows for capacity analysis and visualization. The operational delay outputs were converted back into a GIS thematic format for contrast and further scenario planning. This project has laid the groundwork for improving both planning and civil transportation decision making at the sub-regional, super-project level.
Resumo:
The Iowa Department of Transportation (Iowa DOT) currently performs wetland mitigation on a project-by-project basis. At the same time, other agencies like the Iowa Department of Natural Resources and Natural Resource Conservation Service are performing wetland restoration projects, and counties and cities may be mitigating wetland losses as well. This project examined the feasibility of developing cooperative wetland mitigation projects in order to utilize state and local resources more efficiently to benefit both Iowa and local communities. The project accomplished the following objectives: (1) Identified and characterized cooperative wetland mitigation programs nationwide; (2) Developed a needs assessment through a survey of state, county, and large city agencies in Iowa to describe wetland mitigation programs and determine challenges with mitigation and program improvements, including long-term risks associated with maintenance and monitoring programs; (3) Surveyed state, county, and city agencies and organizations to identify resources available for developing cooperative mitigation projects and procedures; (4) Developed a conceptual framework for cooperative wetland mitigation.
Resumo:
The past fiscal year brought some improvements in the Iowa economy that should position the state for stronger hiring in the year ahead. The housing market is on solid footing, and hiring is broader in scope, including a number of the service-providing industries that had been on hold for some time. State and local government fiscal conditions have also stabilized due to a rise in tax revenues. This means that government cutbacks will be less of a drag on overall job growth. During FY 2013, Iowa’s non-farm jobs advanced by 19,200 (+1.3 percent) compared to 23,000 (+1.6 percent) for the prior fiscal year. Although manufacturing continued to post the largest over the year job gain at close to 5,600, job growth shifted away from manufacturing to the service providing industries by mid-year. Annual job gains of 2,000 or more were reflected in professional and business services, education and health, leisure and hospitality, retail trade and financial activities. Statewide non-farm employment averaged 1,517,700 in FY 2013, the highest level achieved since the record of 1,524,800 in FY 2008.
Resumo:
In coordination with a Technical Advisory Committee (TAC) consisting of County Engineers and Iowa DOT representatives, the Iowa DOT has proposed to develop a set of standards for a single span prefabricated bridge system for use on the local road system. The purpose of the bridge system is to improve bridge construction, accelerate project delivery, improve worker safety, be cost effective, reduce impacts to the travelling public by reducing traffic disruptions and the duration of detours, and allow local forces to construct the bridges. HDR Inc. was selected by the Iowa DOT to perform the initial concept screening of the bridge system. This Final Report summarizes the initial conceptual effort to investigate potential systems, make recommendations for a preferred system and propose initial details to be tested in the laboratory in Phase 2 of the project. The prefabricated bridge components were to be based on the following preliminary criteria set forth by the TAC. The criteria were to be verified and/ or modified as part of the conceptual development. - 24’ and 30’ roadway widths - Skews of 0o, 15o, and 30o - Span lengths of 30’ – 70’ in 10’ increments using precast concrete beams - Voided box beams could be considered - Limit precast element weight to 45,000 pounds for movement and placement of beams - Beams could be joined transversely with threaded rods - Abutment concepts may included precast as well as an option for cast-in-place abutments with pile foundations In addition to the above criteria, there was an interest to use a single-width prefabricated bridge component to simplify fabrication as well as a desire to utilize non-prestressed concrete systems where possible to allow for precasting of the beam modules by local forces or local precast plants. The SL-1 modular steel bridge rail was identified for use with this single span prefabricated bridge system.
Resumo:
The Federal Highway Administration (FHWA) mandated utilizing the Load and Resistance Factor Design (LRFD) approach for all new bridges initiated in the United States after October 1, 2007. As a result, there has been a progressive move among state Departments of Transportation (DOTs) toward an increased use of the LRFD in geotechnical design practices. For the above reasons, the Iowa Highway Research Board (IHRB) sponsored three research projects: TR-573, TR-583 and TR-584. The research information is summarized in the project web site (http://srg.cce.iastate.edu/lrfd/). Two reports of total four volumes have been published. Report volume I by Roling et al. (2010) described the development of a user-friendly and electronic database (PILOT). Report volume II by Ng et al. (2011) summarized the 10 full-scale field tests conducted throughout Iowa and data analyses. This report presents the development of regionally calibrated LRFD resistance factors for bridge pile foundations in Iowa based on reliability theory, focusing on the strength limit states and incorporating the construction control aspects and soil setup into the design process. The calibration framework was selected to follow the guidelines provided by the American Association of State Highway and Transportation Officials (AASHTO), taking into consideration the current local practices. The resistance factors were developed for general and in-house static analysis methods used for the design of pile foundations as well as for dynamic analysis methods and dynamic formulas used for construction control. The following notable benefits to the bridge foundation design were attained in this project: 1) comprehensive design tables and charts were developed to facilitate the implementation of the LRFD approach, ensuring uniform reliability and consistency in the design and construction processes of bridge pile foundations; 2) the results showed a substantial gain in the factored capacity compared to the 2008 AASHTO-LRFD recommendations; and 3) contribution to the existing knowledge, thereby advancing the foundation design and construction practices in Iowa and the nation.