56 resultados para load transfer

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This guide provides a summary of the factors and design theories that should be considered when designing dowel load transfer systems for concrete pavement systems (including dowel basket design and fabrication) and presents recommendations for widespread adoption (i.e., standardization). Development of the guide was sponsored by the National Concrete Consortium with the goal of helping practitioners develop and implement dowel load transfer designs based on knowledge about current research and best practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper are described the results of a research project that had the objective of developing construction procedures for restoring load transfer in existing jointed concrete pavements and of evaluating the effectiveness of the restoration methods. A total of 28 test sections with various load transfer devices were placed. The devices include split pipe, figure eight, vee, double vee, and dowel bars. Patching materials used on the project included three types of fast-setting grouts, three brands of polymer concrete, and plain portland cement concrete. The number and spacing of the devices and dowel bars were also variables in the project. Dowel bars and double vee devices were used on the major portion of the project. Performance evaluations were based on deflection tests conducted with a 20,000-lb axle load. Horizontal joint movement measurements and visual observations were also made. The short-term performance data indicate good results with the dowel bar installations regardless of patching materials. The sections with split pipe, figure eight, and vee devices failed in bond during the first winter cycle. The results with the double vee sections indicate the importance of the patching material to the success or failure of the load transfer system: some sections are performing well and other sections are performing poorly with double vee devices. Horizontal joint movement measurements indicate that neither the dowel bars nor the double vee devices are restricting joint movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In jointed portland cement concrete pavements, dowel bars are typically used to transfer loads between adjacent slabs. A common practice is for designers to place dowel bars at a certain, consistent spacing such that a sufficient number of dowels are available to effectively transfer anticipated loads. In many cases, however, the standards developed today for new highway construction simply do not reflect the design needs of low traffic volume, rural roads. The objective of this research was to evaluate the impact of the number of dowel bars and dowel location on joint performance and ultimately on pavement performance. For this research, test sections were designed, constructed, and tested in actual field service pavement. Test sections were developed to include areas with load transfer assemblies having three and four dowels in the outer wheel path only, areas with no joint reinforcement whatsoever, and full lane dowel basket assemblies as the control. Two adjacent paving projects provided both rural and urban settings and differing base materials. This report documents the approach to implementing the study and provides discussion and suggestions based on the results of the research. The research results indicate that the use of single three or four dowel basket assemblies in the outer wheel path is acceptable for use in low truck volume roads. In the case of roadways with relatively stiff bases such as asphalt treated or stabilized bases, the use of the three dowel bar pattern in the outside wheel path is expected to provide adequate performance over the design life of the pavement. In the case of untreated or granular bases, the results indicate that the use of the three or four dowel bar basket in both wheel paths provides the best long-term solution to load transfer and faulting measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

America’s roadways are in serious need of repair. According to the American Society of Civil Engineers (ASCE), one-third of the nation’s roads are in poor or mediocre condition. ASCE has estimated that under these circumstances American drivers will sacrifice $5.8 billion and as many as 13,800 fatalities a year from 1999 to 2001 ( 1). A large factor in the deterioration of these roads is a result of how well the steel reinforcement transfers loads across the concrete slabs. Fabricating this reinforcement using a shape conducive to transferring these loads will help to aid in minimizing roadway damage. Load transfer within a series of concrete slabs takes place across the joints. For a typical concrete paved road, these joints are approximately 1/8-inch gaps between two adjacent slabs. Dowel bars are located at these joints and used to transfer load from one slab to its adjacent slabs. As long as the dowel bar is completely surrounded by concrete no problems will occur. However, when the hole starts to oblong a void space is created and difficulties can arise. This void space is formed due to a stress concentration where the dowel contacts the concrete. Over time, the repeated process of traffic traveling over the joint crushes the concrete surrounding the dowel bar and causes a void in the concrete. This void inhibits the dowel’s ability to effectively transfer load across the joint. Furthermore, this void gives water and other particles a place to collect that will eventually corrode and potentially bind or lock the joint so that no thermal expansion is allowed. Once there is no longer load transferred across the joint, the load is transferred to the foundation and differential settlement of the adjacent slabs will occur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fiber reinforced polymer (FRP) composite materials are making an entry into the construction market in both buildings and pavements. The application to pavements so far has come in the form of joint reinforcement (dowels and tie bars). FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy-coated steel dowels for pavements. Iowa State University has completed a large amount of laboratory research to determine the diameter, spacing, and durability of FRP dowels. This report documents the performance of elliptical FRP dowels installed in a field situation. Ten joints were monitored in three consecutive test sections, for each of three dowel spacings (10, 12, and 15 inches) including one instrumented dowel in each test section. The modulus of dowel bar support was determined using falling weight deflectometer (FWD) testing and a loaded crawl truck. FWD testing was also used to determine load transfer efficiency across the joint. The long-term performance and durability of the concrete was also evaluated by monitoring faulting and joint opening measurements and performing visual distress surveys at each joint. This report also contains similar information for standard round, medium elliptical, and heavy elliptical steel dowels in a portion of the same highway. In addition, this report provides a summary of theoretical analysis used to evaluate joint differential deflection for the dowels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

America’s roadways are in serious need of repair. According to the American Society of Civil Engineers (ASCE), one-third of the nation’s roads are in poor or mediocre condition (1). ASCE has estimated that under these circumstances American drivers will sacrifice $5.8 billion and as many as 13,800 fatalities a year from 1999 to 2001 ( 1). A large factor in the deterioration of these roads is a result of how well the steel reinforcement transfers loads across the concrete slabs. Fabricating this reinforcement using a shape conducive to transferring these loads will help to aid in minimizing roadway damage. Load transfer within a series of concrete slabs takes place across the joints. For a typical concrete paved road, these joints are approximately 1/8-inch gaps between two adjacent slabs. Dowel bars are located at these joints and used to transfer load from one slab to its adjacent slabs. As long as the dowel bar is completely surrounded by concrete no problems will occur. However, when the hole starts to oblong a void space is created and difficulties can arise. This void space is formed due to a stress concentration where the dowel contacts the concrete. Over time, the repeated process of traffic traveling over the joint crushes the concrete surrounding the dowel bar and causes a void in the concrete. This void inhibits the dowel’s ability to effectively transfer load across the joint. Furthermore, this void gives water and other particles a place to collect that will eventually corrode and potentially bind or lock the joint so that no thermal expansion is allowed. Once there is no longer load transferred across the joint, the load is transferred to the foundation and differential settlement of the adjacent slabs will occur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Load transfer across transverse joints has always been a factor contributing to the useful life of concrete pavements. For many years, round steel dowels have been the conventional load transfer mechanism. Many problems have been associated with the round steel dowels. The most detrimental effect of the steel dowel is corrosion. Repeated loading over time also damages joints. When a dowel is repeatedly loaded over a long period of time, the high bearing stresses found at the top and bottom edge of a bar erode the surrounding concrete. This oblonging creates multiple problems in the joint. Over the past decade, Iowa State University has performed extensive research on new dowel shapes and materials to mitigate the effects of oblonging and corrosion. This report evaluates the bearing stress performance of six different dowel bar types subjected to two different shear load laboratory test methods. The first load test is the AASHTO T253 method. The second procedure is an experimental cantilevered dowel test. The major objective was to investigate and improve the current AASHTO T253 test method for determining the modulus of dowel support, k0. The modified AASHTO test procedure was examined alongside an experimental cantilever dowel test. The modified AASHTO specimens were also subjected to a small-scale fatigue test in order to simulate long-term dowel behavior with respect to concrete joint damage. Loss on ignition tests were also performed on the GFRP dowel specimens to determine the resin content percentage. The study concluded that all of the tested dowel bar shapes and materials were adequate with respect to performance under shear loading. The modified AASHTO method yielded more desirable results than the ones obtained from the cantilever test. The investigators determined that the experimental cantilever test was not a satisfactory test method to replace or verify the AASHTO T253 method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

General principles • Everyone at the construction site, particularly foremen and supervisors, is responsible for recognizing and troubleshooting potential problems as they arise. • Batches of concrete should be consistent and uniformly mixed. • A major cause of pavement failure is unstable subgrade. The subgrade should consist of uniform material, and the subgrade system must drain well. • Dowel bars are important for load transfer at transverse joints on pavements with high truck volumes. Dowels must be carefully aligned, horizontally and vertically, to prevent pavement damage at the joints. • Stringlines control the slipform paver’s horizontal and vertical movement and ensure a smooth pavement profile. Once stringlines are set, they should be checked often and not disturbed. • Overfinishing the new pavement and/or adding water to the surface can lead to pavement surface problems. If the concrete isn’t sufficiently workable, crews should contact the project manager. Changes to the mixture or to paver equipment may reduce the problem. • Proper curing is critical to preventing pavement damage from rapid moisture loss at the pavement surface. • A well spaced and constructed system of joints is critical to prevent random cracking. • Joints are simply controlled cracks. They must be sawed during the brief time after the pavement has gained enough strength to prevent raveling but before it begins to crack randomly (the “sawing window”). • Seasonal and daily weather variations affect setting time and other variables in new concrete. Construction operations should be adjusted appropriately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report presents a review of literature on geosynthetic reinforced soil (GRS) bridge abutments, and test results and analysis from two field demonstration projects (Bridge 1 and Bridge 2) conducted in Buchanan County, Iowa, to evaluate the feasibility and cost effectiveness of the use of GRS bridge abutments on low-volume roads (LVRs). The two projects included GRS abutment substructures and railroad flat car (RRFC) bridge superstructures. The construction costs varied from $43k to $49k, which was about 50 to 60% lower than the expected costs for building a conventional bridge. Settlement monitoring at both bridges indicated maximum settlements ≤1 in. and differential settlements ≤ 0.2 in transversely at each abutment, during the monitoring phase. Laboratory testing on GRS fill material, field testing, and in ground instrumentation, abutment settlement monitoring, and bridge live load (LL) testing were conducted on Bridge 2. Laboratory test results indicated that shear strength parameters and permanent deformation behavior of granular fill material improved when reinforced with geosynthetic, due to lateral restraint effect at the soilgeosynthetic interface. Bridge LL testing under static loads indicated maximum deflections close to 0.9 in and non-uniform deflections transversely across the bridge due to poor load transfer between RRFCs. The ratio of horizontal to vertical stresses in the GRS fill was low (< 0.25), indicating low lateral stress on the soil surrounding GRS fill material. Bearing capacity analysis at Bridge 2 indicated lower than recommended factor of safety (FS) values due to low ultimate reinforcement strength of the geosynthetic material used in this study and a relatively weak underlying foundation layer. Global stability analysis of the GRS abutment structure revealed a lower FS than recommended against sliding failure along the interface of the GRS fill material and the underlying weak foundation layer. Design and construction recommendations to help improve the stability and performance of the GRS abutment structures on future projects, and recommendations for future research are provided in this report.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of non-metallic load transfer and reinforcement devices for concrete highway pavements is a possible alternative to avoid corrosion problems related to the current practice of steel materials. Laboratory and field testing of highway pavement dowel bars, made of both steel and fiber composite materials, and fiber composite tie rods were carried out in this research investigation. Fatigue, static, and dynamic testing was performed on full-scale concrete pavement slabs which were supported by a simulated subgrade and which included a single transverse joint. The bahavior of the full-scale specimens with both steel and fiber composite dowels placed in the test joints was monitored during several million load cycles which simulated truck traffic at a transverse joint. Static bond tests were conducted on fiber composite tie rods to determine the required embedment length. These tests took the form of bending tests which included curvature and shear in the embedment zone and pullout tests which subjected the test specimen to axial tension only. Fiber composite dowel bars were placed at two transverse joints during construction of a new concrete highway pavement in order to evaluate their performance under actual field conditions. Fiber composite tie rods were also placed in the longitudinal joint between the two fiber composite doweled transverse joints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The feasibility of substituting fibercomposite (FC) (thermoset) pavement dowels for steel pavement dowels was investigated in this research project. Load transfer capacity, flexural capacity, and material properties were examined. The objectives of Part 1 of this final report included the shear behavior and strength deformations of FC dowel bars without aging. Part 2 will contain the aging effects. This model included the effects of modulus of elasticity for the pavement dowel and concrete, dowel diameter, subgrade stiffness, and concrete compressive strength. An experimental investigation was carried out to establish the modulus of dowel support which is an important parameter for the analysis of dowels. The experimental investigation included measured deflections, observed behavioral characteristics, and failure mode observations. An extensive study was performed on various shear testing procedures. A modified Iosipescu shear method was selected for the test procedure. Also, a special test frame was designed and fabricated for this procedure. The experimental values of modulus of support for shear and FC dowels were used for arriving at the critical stresses and deflections for the theoretical model developed. Different theoretical methods based on analyses suggested by Timoshenko, Friberg, Bradbury, and Westergaard were studied and a comprehensive theoretical model was developed. The fibercomposite dowels were found to provide strengths and behavioral characteristics that appear promising as a potential substitute for steel dowels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transverse joints are placed in portland cement concrete pavements to control the development of random cracking due to stresses induced by moisture and thermal gradients and restrained slab movement. These joints are strengthened through the use of load transfer devices, typically dowel bars, designed to transfer load across the joint from one pavement slab to the next. Epoxy coated steel bars are the materials of choice at the present time, but have experienced some difficulties with resistance to corrosion from deicing salts. The research project investigated the use of alternative materials, dowel size and spacing to determine the benefits and limitations of each material. In this project two types of fiber composite materials, stainless steel solid dowels and epoxy coated dowels were tested for five years in side by side installation in a portion of U.S. 65 near Des Moines, Iowa, between 1997 and 2002. The work was directed at analyzing the load transfer characteristics of 8-in. vs. 12-in. spacing of the dowels and the alternative dowel materials, fiber composite (1.5- and 1.88-in. diameter) and stainless steel (1.5-in. diameter), compared to typical 1.5-in. diameter epoxy-coated steel dowels placed on 12-in. spacing. Data were collected biannually within each series of joints and variables in terms of load transfer in each lane (outer wheel path), visual distress, joint openings, and faulting in each wheel path. After five years of performance the following observations were made from the data collected. Each of the dowel materials is performing equally in terms of load transfer, joint movement and faulting. Stainless steel dowels are providing load transfer performance equal to or greater than epoxy-coated steel dowels at the end of five years. Fiber reinforced polymer (FRP) dowels of the sizes and materials tested should be spaced no greater than 8 in. apart to achieve comparable performance to epoxy coated dowels. No evidence of deterioration due to road salts was identified on any of the products tested. The relatively high cost of stainless steel solid and FRP dowels was a limitation at the time of this study conclusion. Work is continuing with the subject materials in laboratory studies to determine the proper shape, spacing, chemical composition and testing specification to make the FRP and stainless (clad or solid) dowels a viable alternative joint load transfer material for long lasting portland cement concrete pavements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As truck traffic on Iowa secondary roads has increased, engineers have moved to concrete pavements of greater depths. Early designs included thickened edge pavements and depths of seven inches or greater. The designs typically did not have load transfer devices installed in the transverse joints and relied on aggregate interlock for this purpose. In some cases, aggregate interlock was not adequate to deal with the soils and traffic conditions and faulting of the joints has begun to appear. Engineers are now faced with the need to install or retrofit load transfer in the joints to preserve the pavements. Questions associated with this decision range from the type of dowel material to dowel diameter, spacing, number of bars, placement method, and construction techniques to be used to assure reduction or elimination of faulting. Buena Vista County constructed a dowel bar retrofit project on one mile of road. The plan called for addition of the dowels (2, 3, or 4) in the outer wheel path only and surface grinding in lieu of asphalt overlay. The project included the application of elliptical- and round-shaped dowels in a rehabilitation project. Dowel material types included conventional epoxy-coated steel and fiber-reinforced polymer (FRP). This work involved the determination of relative costs in materials to be used in this type of work and performance of FRP and elliptical-shaped steel dowels in the retrofit work. The results indicate good performance from each of the bar configurations and use the results of ride and deflection testing over the research period to project the benefits that can be gained from each configuration vs. the anticipated construction costs. The reader is cautioned that this project could not relate the number of dowels required to the level of anticipated truck traffic for other roads that might be considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Joints are always a concern in the construction and long-term performance of concrete pavements. Research has shown that we need some type of positive load transfer across transverse joints. The same research has directed pavement designers to use round dowels spaced at regular intervals across the transverse joint to distribute the vehicle loads both longitudinally and transversely across the joint. The goal is to reduce bearing stresses on the dowels and the two pavement slab edges and erosion of the underlying surface, hence improved long-term joint and pavement structure performance. Road salts cause metal corrosion in doweled joints, excessive bearing stresses hollow dowel ends, and construction processes are associated with cracking pavement at the end of dowels. Dowels are also a cost factor in the pavement costs when joint spacing is reduced to control curling and warping distress in pavements. Designers desire to place adequate numbers of dowels spaced at the proper locations to handle the anticipated loads and bearing stresses for the design life of the pavement. This interim report is the second of three reports on the evaluation of elliptical steel dowels. This report consists of an update on the testing and performance of the various shapes and sizes of dowels. It also documents the results of the first series of performance surveys and draws interim conclusions about the performance of various bar shapes, sizes, spacings, and basket configurations. In addition to the study of elliptical steel dowel performance, fiber reinforced polymers (FRP) are also tested as elliptical dowel material (in contrast to steel) on a section of the highway construction north of the elliptical steel test sections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.