6 resultados para integration of modalities
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
Global positioning systems (GPS) offer a cost-effective and efficient method to input and update transportation data. The spatial location of objects provided by GPS is easily integrated into geographic information systems (GIS). The storage, manipulation, and analysis of spatial data are also relatively simple in a GIS. However, many data storage and reporting methods at transportation agencies rely on linear referencing methods (LRMs); consequently, GPS data must be able to link with linear referencing. Unfortunately, the two systems are fundamentally incompatible in the way data are collected, integrated, and manipulated. In order for the spatial data collected using GPS to be integrated into a linear referencing system or shared among LRMs, a number of issues need to be addressed. This report documents and evaluates several of those issues and offers recommendations. In order to evaluate the issues associated with integrating GPS data with a LRM, a pilot study was created. To perform the pilot study, point features, a linear datum, and a spatial representation of a LRM were created for six test roadway segments that were located within the boundaries of the pilot study conducted by the Iowa Department of Transportation linear referencing system project team. Various issues in integrating point features with a LRM or between LRMs are discussed and recommendations provided. The accuracy of the GPS is discussed, including issues such as point features mapping to the wrong segment. Another topic is the loss of spatial information that occurs when a three-dimensional or two-dimensional spatial point feature is converted to a one-dimensional representation on a LRM. Recommendations such as storing point features as spatial objects if necessary or preserving information such as coordinates and elevation are suggested. The lack of spatial accuracy characteristic of most cartography, on which LRM are often based, is another topic discussed. The associated issues include linear and horizontal offset error. The final topic discussed is some of the issues in transferring point feature data between LRMs.
Resumo:
This issue review analyzes the duties and responsibilities of troopers in the Iowa State Patrol, or ISP, and Motor Vehicle Enforcement, MVE, officers in the Department of Transportation, or DOT, as well as the differences such as funding, pay and pension. In addition, this issue review discusses the proposal for a potential integration of the offices under one system.
Resumo:
This guidebook has been published by the University of Northern Iowa New Iowans Program to assist employers, managers and supervisors with the unique challenges associated with hiring, training and integrating immigrant and refugee workers. Its purpose is to promote proactive engagement of newcomer workers to assure the vitality of Iowa businesses. Successful integration of immigrants and refugees in our workplaces and communities is essential to insure Iowa’s long-term economic and social health. This book provides essential information for human resource directors, trainers, supervisors and others as they meet the challenges and rewards of hiring immigrants and refugees. Of course, no guidebook can provide simple solutions to complex issues in a great variety if workplaces. This is not a “cookbook” with recipes that provide easy answers to challenges facing every company and worker. All employers are unique and approach problems differently. What works in one company might not work as well in another.
Resumo:
Highway agencies spend millions of dollars to ensure safe and efficient winter travel. However, the effectiveness of winter weather maintenance practices on safety and mobility are somewhat difficult to quantify. Phase I of this project investigated opportunities for improving traffic safety on state-maintained roads in Iowa during winter weather conditions. The primary objective was to develop several preliminary means for the Iowa Department of Transportation (DOT) to identify locations of possible interest systematically with respect to winter weather-related safety performance based on crash history. Specifically, metrics were developed to assist in identifying possible habitual, winter weather-related crash sites on state-maintained rural highways in Iowa. In addition, the current state of practice, for both domestic and international highway agency practices, regarding integration of traffic safety- and mobility-related data in winter maintenance activities and performance measures were investigated. This investigation also included previous research efforts. Finally, a preliminary work plan, focusing on systematic use of safety-related data in support of winter maintenance activities and site evaluation, was prepared.
Resumo:
This project was undertaken jointly with a project supported by the Iowa Corn Promotion Board. Together the projects aimed at producing the organic acids, propionic acid and acetic acid, by fermentation. The impacts were to provide agriculturally-based alternatives to production of these acids, currently produced mainly as petrochemicals. The potentially high-demand use for acetic acid is as the "acetate" in Calcium Magnesium Acetate (CMA), the non-corrosive road deicer. Fermentation was, however, far from being an economically acceptable alternative. Gains were made in this work toward making this a feasible route. These advances included (1) development of a variant strain of propionibacteria capable of producing higher concentrations of acids; (2) comparison of conditions for several ways of cultivating free cells and establishment of the relative benefits of each; (3) achievement of the highest productivity in fermentations using immobilized cells; (4) identification of corn steep liquor as a lower cost substrate for the fermentation; (5) application of a membrane extraction system for acid recovery and reduction of product inhibition; and (6) initial use of more detailed economic analysis of process alternatives to guide in the identification of where the greatest payback potential is for future research. At this point, the fermentation route to these acids using the propionibacteria is technically feasible, but economically unfeasible. Future work with integration of the above process improvements can be expected to lead to further gains in economics. However, such work can not be expected to make CMA a less expensive deicer than common road salt.