6 resultados para inorganic nitrogen leaching
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Report produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.
Resumo:
Nitrogen (N) is typically one of the largest corn fertilization expenses. Nitrogen application is critical because it signifi cantly improves corn yield in many crop rotations. When choosing N rates, producers need to carefully consider both achieving most profi table economic return and advancing environmental stewardship. In 2004, university agronomists from the Corn Belt states began discussions regarding N rate use for corn production. The reasons for the discussions centered on apparent differences in methods for determining N rates across states, misperceptions regarding N rate guidelines, and concerns about application rates as corn yields have climbed to historic levels. An outcome of those discussions was an effort with the objectives to: ▪ develop N rate guidelines that could be applicable on a regional basis and ▪ identify the most profi table fertilizer N rates for corn production across the Corn Belt. This publication provides an overview of corn N fertilization in regard to rate of application, investigates concepts for determining economic application rates, and describes a suggested regional approach for developing corn N rate guidelines directly from recent research data.
Resumo:
Part of the Department of Natural Resources' Water Fact Sheet Series. This one is about Nitrate in Iowa's rivers and streams.
Greenhouse Gas and Nitrogen Fertilizer Scenarios for U.S. Agriculture and Global Biofuels, June 2011
Resumo:
This analysis uses the 2011 FAPRI-CARD (Food and Agricultural Policy Research Institute–Center for Agricultural and Rural Development) baseline to evaluate the impact of four alternative scenarios on U.S. and world agricultural markets, as well as on world fertilizer use and world agricultural greenhouse gas emissions. A key assumption in the 2011 baseline is that ethanol support policies disappear in 2012. The baseline also assumes that existing biofuel mandates remain in place and are binding. Two of the scenarios are adverse supply shocks, the first being a 10% increase in the price of nitrogen fertilizer in the United States, and the second, a reversion of cropland into forestland. The third scenario examines how lower energy prices would impact world agriculture. The fourth scenario reintroduces biofuel tax credits and duties. Given that the baseline excludes these policies, the fourth scenario is an attempt to understand the impact of these policies under the market conditions that prevail in early 2011. A key to understanding the results of this fourth scenario is that in the absence of tax credits and duties, the mandate drives biofuel use. Therefore, when the tax credits and duties are reintroduced, the impacts are relatively small. In general, the results show that the entire international commodity market system is remarkably robust with respect to policy changes in one country or in one sector. The policy implication is that domestic policy changes implemented by a large agricultural producer like the United States can have fairly significant impacts on the aggregate world commodity markets. A second point that emerges from the results is that the law of unintended consequences is at work in world agriculture. For example, a U.S. nitrogen tax that might presumably be motivated for environmental benefit results in an increase in world greenhouse gas emissions. A similar situation occurs in the afforestation scenario in which crop production shifts from high-yielding land in the United States to low-yielding land and probably native vegetation in the rest of the world, resulting in an unintended increase in global greenhouse gas emissions.
Resumo:
The Tuttle Lake Watershed is approximately 125,000 acres and Tuttle Lake itself is 2,270 acres; 5,609 acres of the watershed lies in Iowa territory within Emmet County. It is a sub-watershed of the larger East Fork Des Moines River Watershed, also referred to as Hydrologic Unit Code 07100003. For the purpose of this document, grant money is only being applied for the project implementation in the Iowa portion of the Tuttle Lake Watershed. Tuttle Lake was placed on the 2002 EPA 303(d) Impaired Waters List due to a “very large population of suspended algae and very high levels of inorganic turbidity.” In 2004, the Iowa Department of Natural Resources (IDNR) completed a Total Maximum Daily Load (TMDL) study on Tuttle Lake and found excess sediment and phosphorus levels being the primary pollutants causing the algae and turbidity impairment. Although two point sources were located in Minnesota, IDNR determined that the influx of nutrients is likely from agricultural runoff and re-suspension of lake sediment. The condition of Tuttle Lake is such that the reduction of sediment, nutrients [phosphorus and nitrogen] and pathogens is the primary objective. To achieve that objective, wetlands will be constructed in this first phase to reduce the delivery of nitrogen, phosphorus, and sediment to Tuttle Lake.